Sand-rubber mixture (SRm) behaviour is affected by rubber content (RC) whilst dissipation in sands is caused by inter-particle sliding. Dissipation in SRm is as, or more significant than in sands. However, the mechanisms of dissipation in SRm are not well understood. In this study, onedimensional compression tests on sand samples with RC of 0%, 15%, 30%, 45% and 100% by mass were performed on a standard oedometer. In addition, a SRm with RC of 30% was tested on a minioedometer placed inside an X-ray scanner and 3D images of the internal structure of the material were acquired at three stages during loading and unloading. Image analysis was used to infer particle-scale measurements and provide experimental evidence to help explaining the energy dissipation mechanisms for SRm. It is postulated here that energy dissipation in these mixtures is dominated by inter-particle sliding at initial stages of loading, but once rubber particles fill the voids spaces between the sand, deformation and dissipation mechanisms are dominated by the deformation of the rubber particles.
It is well recognised that particle breakage in granular materials is affected by stress level, stress path, initial density, and particle size distribution (PSD), amongst others. Furthermore, it has been shown that breakage has a significant influence on the stress-strain behaviour of soils. This paper compares a commonly used breakage parameter with grading entropy coordinates. Such coordinates enable for the representation of any PSD as a single point in a Cartesian coordinate plane. Hence, the evolution of PSD changes may be easily tracked. This paper aims to demonstrate that grading entropy coordinates are as (or more) effective than other breakage parameters, whilst providing additional insight. On the basis of limited data it is shown that grading entropy coordinates are able to capture the dependence of breakage on stress level, stress path and initial PSD.
Particle breakage in soils is a well-recognised behaviour. Conventional methods for quantifying the breakage process rely on calculating the area between the particle size distribution (PSD) curves produced before and after crushing. A key aspect of breakage is understanding the process across the different size/sieve fractions. Grading entropy coordinates allow for the representation of any PSD to be shown as a single point on a Cartesian plane and are able to track grading evolution with relative ease. In this study, grading entropy coordinates are compared to three commonly used breakage indices (Br, Br* and IG). It is shown that grading entropy coordinates are advantageous over the traditional indices in quantifying subtle changes in the PSD evolution and directly provide further insight with regards to the individual fraction sizes. It is also discussed that conventional breakage indices rely on relative measures and are dependent on assumptions of an initial and/or final PSD. In contrast, grading entropy coordinates depend only on the characteristics of the (current) PSD curve. It was also observed that the breakage evolution captured by the entropy coordinates is able to determine the rate at which differently sized particles break as differently sized particles take on stress. Moreover, it is suggested that entropy coordinates may also stress path dependency, a feature not present in conventional indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.