Innovative designs of transport vehicles need to be validated in order to demonstrate reliability and provide confidence. It is normal practice to study the mechanical response of the structural elements by comparing numerical results obtained from finite element simulation models with results obtained from experiment. In this frame, the use of whole-field optical techniques has been proven successful in the validation of deformation, strain, or vibration modes. The strength of full-field optical techniques is that the entire displacement field can be acquired. The objective of this article is to integrate full-field optical measurement methodologies with state-of-the-art computational simulation techniques for nonlinear transient dynamic events. In this frame, composite car bonnet frame structures of dimensions about 1.8 m × 0.8 m are considered. They have been tested in low-velocity mass-drop impact loading with impact energies ranging from 20 to 200 J. In parallel, simulation models of the car bonnet frame have been developed using layered shell elements. The Zernike shape descriptor approach was used to decompose numerical and experimental data into moments for comparison purposes. A very good agreement between numerical and experimental results was observed. Therefore, integration of numerical analysis with full-field optical measurements along with sophisticated comparison techniques can increase design reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.