International audienceThis paper aims to improve knowledge on the suitability of the discrete element method (DEM) to simulate the in-plane and out-of-plane behaviour of different in-configuration structural masonry walls constructed with dry joints. The study compares the results obtained from laboratory tests against those predicted using the three-dimensional distinct element 3DEC software. Significant features of the structural behaviour shown by the walls are discussed and conclusions on their ultimate capacity and failure mechanisms are addressed. A key feature of the DEM is the important role that brick discontinuities, i.e. joints, play in the mechanics of masonry. Within DEM, the bricks were modelled as continuum rigid elements while the joints were modelled by line interface elements represented by the Mohr-Coulomb law. The analysis of the results showed that the model developed is capable of representing the crack development and load carrying capacity of masonry structures constructed with dry joints with sufficient accuracy. Moreover, a collection of experimentally verified material parameters is provided to be used by other researchers and engineers and to develop a reliable model to solve engineering challenges worldwide. © 2017 Elsevier Lt
On 28 December 2020, seismic activity in the wider Petrinja area strongly intensified after a period of relative seismological quiescence that had lasted more than 100 years (since the well-known M5.8 Kupa Valley earthquake of 1909, which is known based on the discovery of the Mohorovičić discontinuity). The day after the M5 foreshock, a destructive M6.2 mainshock occurred. Outcomes of preliminary seismological, geological and SAR image analyses indicate that the foreshocks, mainshock and aftershocks were generated due to the (re)activation of a complex fault system—the intersection of longitudinal NW–SE right-lateral and transverse NE–SW left-lateral faults along the transitional contact zone of the Dinarides and the Pannonian Basin. According to a survey of damage to buildings, approximately 15% of buildings were very heavily damaged or collapsed. Buildings of special or outstanding historical or cultural heritage significance mostly collapsed or became unserviceable. A preliminary analysis of the earthquake ground motion showed that in the epicentral area, the estimated peak ground acceleration PGA values for the bedrock ranged from 0.29 to 0.44 g. In the close Petrinja epicentral area that is characterized by the superficial deposits, significant ground failures were reported within local site effects. Based on that finding and building damage, we assume that the resulting peak ground acceleration (PGAsite) values were likely between 0.4 and 0.6 g depending on the local site characteristics and the distance from the epicentre.
This is a repository copy of Evaluation of different approaches for the estimation of the seismic vulnerability of masonry towers.
ReuseThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. ABSTRACTIn this paper, a 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry structures is proposed. Representative Elements consisting of one brick and few mortar layers are explicitly modelled using 3D solid finite elements obeying to plastic-damage constitutive laws (one for brick and one for mortar) conceived in the framework of nonassociated plasticity. This permits to represent the brick and mortar mechanical behaviour when cracking and/or crushing occur. Representative Elements are assembled, accounting for any actual 3D through-thickness arrangement of masonry, by means of zero-thickness cohesive interfaces based on the contact penalty method. In the pre-failure of interfaces, all the significant deformability of the system is addressed to the 3D finite elements. A Mohr-Coulomb failure surface with tension cut-off is adopted. The post-failure interfacial response is characterized by a cohesive behaviour in tension and a cohesive-frictional behaviour in shear, which appears consistent with small-scale tests outcomes. Experimental-numerical comparisons are provided for the in-plane and out-of-plane behaviour of masonry panels. The accuracy and the potentialities of the modelling approach are shown. The direct characterization of all the model parameters from small-scale tests, as well as their clear mechanical meaning constitute further appealing qualities of the model proposed.
During the last decades, several macro-models have been proposed for the modelling of the infill panels' contribution to the lateral strength of frames. Despite all this effort, a robust model, which takes into account the influence of the vertical load, is not yet available. Furthermore, the influence of the very common case of infill walls with openings, such as windows and doors, has been neglected in all the code provisions that have been published so far. In this paper, an updated macro-model, based on the equivalent pin-jointed diagonal compressive strut, is presented. The proposed macro-model is able to represent the stiffening effect of the infill panel with openings by taking into account both the size of the opening and the vertical load acting on the frame. Detailed and in-depth parametrical investigation, based on finite element analysis, shows that the proposed mathematical macro-model can be used as a reliable and useful tool for the determination of the equivalent compressive strut width since it accounts for a large number of parameters, which are not generally accounted for by the already available models in the literature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.