A primary objective in developing a neural prosthesis is to replace neural circuitry in the brain that no longer functions appropriately. Such a goal requires artificial reconstruction of neuron-to-neuron connections in a way that can be recognized by the remaining normal circuitry, and that promotes appropriate interaction. In this study, the application of a specially designed neural prosthesis using a multi-input/multi-output (MIMO) nonlinear model is demonstrated by using trains of electrical stimulation pulses to substitute for MIMO model derived ensemble firing patterns. Ensembles of CA3 and CA1 hippocampal neurons, recorded from rats performing a delayed-nonmatch-to-sample (DNMS) memory task, exhibited successful encoding of trial-specific sample lever information in the form of different spatiotemporal firing patterns. MIMO patterns, identified online and in real-time, were employed within a closed-loop behavioral paradigm. Results showed that the model was able to predict successful performance on the same trial. Also, MIMO model-derived patterns, delivered as electrical stimulation to the same electrodes, improved performance under normal testing conditions and, more importantly, were capable of recovering performance when delivered to animals with ensemble hippocampal activity compromised by pharmacologic blockade of synaptic transmission. These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.
Abstract-Identification of nonlinear dynamic systems using the Volterra-Wiener approach requires the estimation of system kernels from input-output data. A kernel estimation technique, originally proposed by Wiener (1958) and recently studied by Ogura (1986), employs Laguerre expansions of the kernels and estimates the unknown expansion coefficients via time-averaging of covariance samples. This paper presents another implementation of the technique which utilizes least-squares fitting instead of covariance time-averaging and provides for the proper selection of the intrinsic Laguerre parameter "c~". Results from simulation examples demonstrate that this implementation can yield accurate kernel estimates up to 3rd-order from short input-output data records. Furthermore, it is shown that this implementation remains effective in the presence of noise and when the spectral characteristics of the input signal deviate somewhat from the theoretical requirements of whiteness. The computational requirements and the overall performance of this technique compare favorably to existing methods, especially in cases where the system kernels can be represented with a relatively small number of Laguerre basis functions.
One of the fundamental principles of cortical brain regions, including the hippocampus, is that information is represented in the ensemble firing of populations of neurons, i.e., spatio-temporal patterns of electrophysiological activity. The hippocampus has long been known to be responsible for the formation of declarative, or fact-based, memories. Damage to the hippocampus disrupts the propagation of spatio-temporal patterns of activity through hippocampal internal circuitry, resulting in a severe anterograde amnesia. Developing a neural prosthesis for the damaged hippocampus requires restoring this multiple-input, multiple-output transformation of spatio-temporal patterns of activity. Because the mechanisms underlying synaptic transmission and generation of electrical activity in neurons are inherently nonlinear, any such prosthesis must be based on a nonlinear multiple-input, multiple-output model. In this paper, we have formulated the transformational process of multi-site propagation of spike activity between two subregions of the hippocampus (CA3 and CA1) as the identification of a multiple-input, multiple-output (MIMO) system, and proposed that it can be decomposed into a series of multiple-input, single-output (MISO) systems. Each MISO system is modeled as a physiologically plausible structure that consists of 1) linear/nonlinear feedforward Volterra kernels modeling synaptic transmission and dendritic integration, 2) a linear feedback Volterra kernel modeling spike-triggered after-potentials, 3) a threshold for spike generation, 4) a summation process for somatic integration, and 5) a noise term representing intrinsic neuronal noise and the contributions of unobserved inputs. Input and output spike trains were recorded from hippocampal CA3 and CA1 regions of rats performing a spatial delayed-nonmatch-to-sample memory task that requires normal hippocampal function. Kernels were expanded with Laguerre basis functions and estimated using a maximum-likelihood method. Complexity of the feedforward kernel was progressively increased to capture higher-order system nonlinear dynamics. Results showed higher prediction accuracies as kernel complexity increased. Self-kernels describe the nonlinearities within each input. Cross-kernels capture the nonlinear interaction between inputs. Second- and third-order nonlinear models were found to successfully predict the CA1 output spike distribution based on CA3 input spike trains. First-order, linear models were shown to be insufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.