The present article describes the behavioral model of blockchain services; their reliability is confirmed on the basis of experimental data. The authors identify the main technical characteristics and features associated with data transmission through the network. The authors determine the network scheme, working with blockchain transactions and the dependence of network characteristics on application parameters. They analyze the application of this model for the detection of the blockchain service and the possibility of the existing security mechanisms of this technology being evaded. Furthermore, the article offers recommendations for hiding the blockchain traffic profile to significantly complicate its identification in the data network.
Over the past decade, wireless communication technologies have developed significantly for intelligent applications in road transport. This paper provides an overview of telecommunications-based intelligent transport systems with a focus on ensuring system safety and resilience. In vehicle-to-everything, these problems are extremely acute due to the specifics of the operation of transport networks, which requires the use of special protection mechanisms. In this regard, it was decided to use blockchain as a system platform to support the needs of transport systems for secure information exchange. This paper describes the technological aspects of implementing blockchain technology in vehicle-to-network; the features of such technology are presented, as well as the features of their interaction. The authors considered various network characteristics and identified the parameters that have a primary impact on the operation of the vehicle-to-network (V2N) network when implementing the blockchain. In the paper, an experiment was carried out that showed the numerical characteristics for the allocation of resources on devices involved in organizing V2N communication and conclusions were drawn from the results of the study.
Vehicular communication is a promising technology that has been announced as a main use-case of the fifth-generation cellular system (5G). Vehicle-to-everything (V2X) is the vehicular communication paradigm that enables the communications and interactions between vehicles and other network entities, e.g., road-side units (RSUs). This promising technology faces many challenges related to reliability, availability and security of the exchanged data. To this end, this work aims to solve the scientific problem of building a vehicular network architecture for reliable delivery of correct and uncompromised data within the V2X concept to improve the safety of road users, using blockchain technology and mobile edge computing (MEC). The proposed work provides a formalized mathematical model of the system, taking into account the interconnection of objects and V2X information channels and an energy-efficient offloading algorithm to manage traffic offloading to the MEC server. The main applications of the blockchain and MEC technology in the developed system are discussed. Furthermore, the developed system, with the introduced sub-systems and algorithms, was evaluated over a reliable environment, for different simulation scenarios, and the obtained results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.