In the last years, deep learning and reinforcement learning methods have significantly improved mobile robots in such fields as perception, navigation, and planning. But there are still gaps in applying these methods to real robots due to the low computational efficiency of recent neural network architectures and their poor adaptability to robotic experiments' realities. In this paper, we consider an important task in mobile robotics -navigation to an object using an RGB-D camera. We develop a new neural network framework for robot control that is fast and resistant to possible noise in sensors and actuators. We propose an original integration of semantic segmentation, mapping, localization, and reinforcement learning methods to improve the effectiveness of exploring the environment, finding the desired object, and quickly navigating to it. We created a new HISNav dataset based on the Habitat virtual environment, which allowed us to use simulation experiments to pre-train the model and then upload it to a real robot. Our architecture is adapted to work in a real-time environment and fully implements modern trends in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.