Freeform suifaces, including the femoral components of knee prosthetics, present a significant challenge in manufacturing. The finishing process is often performed manually, which leads to surface finish variations. In the case of knee prosthetics, this can be a factor leading to accelerated wear of the polyethylene tibial component. The wear resistance of polyethylene components might be influenced by not only the roughness but also the lay of femoral component surfaces. This study applies magnetic abrasive finishing (MAF) for nanometer-scale finishing of cobalt chromium alloys, which are commonly used in knee prosthetics and other freeform components. Using fiat disks as workpieces, this paper shows the dominant parameters for controlling the lay in MAF and demonstrates the feasibility of MAF to alter the lay white controlling the surface roughness. The manually finished disk surfaces (with roughness around 3 nm S^j, consisting of random cutting marks, were compared to MAF-produced surfaces (also with roughness around 3 nm S J with different lays. Tests using deionized water droplets show that the lay infiuences the wetting properties even if the surface roughness changes by no more than a nanometer. Surfaces with unidirectional cutting marks exhibit the least wettability, and increasing the cross-hatch angle in the MAF-produced surfaces increases the wettability. Surfaces consisting of short, intermittent cutting marks were the most wettable by deionized water.
Surface metrology instruments normally require thermal, seismic and acoustic isolation. Shop-floor metrology solutions offer reduced cost and process time. If they operate on the same principles as laboratory devices, an inherent sensitivity to vibration remains. This paper describes a methodology for evaluating 'environmental tolerance' and applying it to characterize a recently introduced 'environmentally tolerant' scanning white light interferometer (SWLI). Previously published measurements of replicated nickel reference standards on the new instrument and on a stylus profilometer showed good correlation. Surface topography repeatabilities (per ISO 25178-604:2013) were insignificantly different when evaluated on the SWLI instrument in a metrology laboratory and in a manufacturing area. Measurements of reference standards under forced vibration of the entire instrument show maximum ripple error and data dropout in regions of structural resonance. Measurements were performed with large forced horizontal and vertical sample oscillation beneath the objective, exhibiting maximum ripple error near odd integer multiples of half the instrument detector frequency. Error due to data dropout was also investigated.
Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol’ sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.
Magnetic field–assisted finishing (MAF) is used to polish free-form surfaces. The material removal mechanism can be described as a flexible “magnetic brush” that consists of ferromagnetic particles and abrasives that arrange themselves in the working gap between the magnet and the workpiece. Relative motion between the brush and the workpiece causes microcutting and improves surface finish. In this study, the contributions of the magnetic and polishing force components to the total force were evaluated. The effect of varying the polishing conditions, such as the working gap and the size of the ferromagnetic iron particles, on polishing forces, surface roughness, and material removal rate was also analyzed. It was observed that the polishing forces varied considerably with working gap. Also, the iron particle size was found to have a strong relation to the rate at which the surface roughness improved. Surface roughness values of 2–3 nm were achieved.
Freeform surfaces, including the femoral components of knee prosthetics, present a significant challenge in manufacturing. The finishing process is often performed manually, leading to high variation in quality. This study proposes using Magnetic Abrasive Finishing (MAF) to finish the cobalt chromium (Co-Cr) alloy femoral components of knee prosthetics and varying the surface pattern to alter surface wettability, which influences the tribological properties of the surfaces. As a first step, flat workpieces of the same material were used in this paper. To obtain an understanding of the relationship between surface pattern and wettability, two sets of finishing conditions were developed to yield two different surface patterns while maintaining roughness values (2–5 nm Ra). One surface consists of long cutting marks exhibiting strong directionality, while the other consists of short, intermittent cutting marks. The surface with strong directionality resulted in an increased contact angle between the workpiece and de-ionized water (from 90.0°±1.5° to 93.8°±2.5°), thus a decrease in wettability. The other surface showed a decreased contact angle (from 98.7°±5.3° to 93.3°±3.7°), thus an increase in wettability. This study experimentally demonstrates the feasibility of MAF to alter surface pattern—and to potentially alter the wettability—while maintaining initial surface roughness at a nanometer scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.