Knowledge of molecular weight, oligomeric states, and quaternary arrangements of proteins in solution is fundamental for understanding their molecular functions and activities. We describe here a program SAXSMoW 2.0 for robust and quick determination of molecular weight and oligomeric state of proteins in dilute solution, starting from a single experimental small‐angle scattering intensity curve, I(q), measured on a relative scale. The first version of this calculator has been widely used during the last decade and applied to analyze experimental SAXS data of many proteins and protein complexes. SAXSMoW 2.0 exhibits new features which allow for the direct input of experimental intensity curves and also automatic modes for quick determinations of the radius of gyration, volume, and molecular weight. The new program was extensively tested by applying it to many experimental SAXS curves downloaded from the open databases, corresponding to proteins with different shapes and molecular weights ranging from ~10 kDa up to about ~500 kDa and different shapes from globular to elongated. These tests reveal that the use of SAXSMoW 2.0 allows for determinations of molecular weights of proteins in dilute solution with a median discrepancy of about 12% for globular proteins. In case of elongated molecules, discrepancy value can be significantly higher. Our tests show discrepancies of approximately 21% for the proteins with molecular shape aspect ratios up to 18.
SAXSMoW (SAXS Molecular Weight) is an online platform widely used over the past few years for determination of molecular weights of proteins in dilute solutions. The scattering intensity retrieved from small-angle X-ray scattering (SAXS) raw data is the sole input to SAXSMoW for determination of molecular weights of proteins in liquid. The current updated SAXSMoW version 3.0 determines the linear dependence of the true protein volume on their apparent protein volume, based on SAXS curves calculated for 67,000 protein structures selected from the Protein Data Bank. SAXSMoW 3.0 was tested against 43 experimental SAXS scattering curves from proteins with known molecular
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.