Herein, we show that mesoporous titania-supported gold nanoparticle assemblies (Au/MTA) catalyze the activation of NaBH4 and 1,1,3,3-tetramethyl disiloxane (TMDS) compounds, which act as transfer hydrogenation agents for the reduction of nitroarenes to the corresponding anilines in moderate to high yields. On the other hand, nitroalkanes are reduced to the corresponding diazo and hydrazo compounds under the studied conditions. The substantial measured primary kinetic isotope effects found here suggested that B–H bond cleavage occurs in a rate-determining step and [Au]–H active hybrids are formed, which are responsible for the reduction of nitroarenes to the corresponding amines. Formal Hammett-type kinetic analysis of a range of para-X-substituted nitroarenes lends support to this hypothesis. Nitro compounds substituted with electron-withdrawing groups were reduced faster than the corresponding compounds with electron-donating groups. The presence of water enhanced the catalytic activity of Au/MTA in aprotic solvents. Nuclear magnetic resonance studies support the formation of the corresponding hydroxylamines as the only intermediate products. On the basis of the high observed chemoselectivities and the fast and clean reaction processes, these catalytic systems, i.e., Au/MTA-NaBH4 and Au/MTA-TMDS, show promise for the efficient synthesis of aromatic amines at industrial levels.
Dedicated to the memory and achievements of Dr. Ioannis TamiolakisThis work reports the synthesis and catalytic application of mesoporous Au-loaded Mn 3 O 4 nanoparticle assemblies (MNAs) with different Au contents, i. e., 0.2, 0.5 and 1 wt %, towards the selective oxidation of anilines into the corresponding nitroarenes. Among common oxidants, as well as several supported gold nanoparticle platforms, Au/Mn 3 O 4 MNAs containing 0.5 wt % Au with an average particle size of 3-4 nm show the best catalytic performance in the presence of tert-butyl hydroperoxide (TBHP) as a mild oxidant. In all cases, the corresponding nitroarenes were isolated in high to excellent yields (85-97 %) and selectivity (> 98 %) from acetonitrile or greener solvents, such as ethyl acetate, after simple flash chromatography purification. The 0.5 % Au/Mn 3 O 4 catalyst can be isolated and reused four times without a significant loss of its activity and can be applied successfully to a lab-scale reaction of ptoluidine (1 mmol) leading to the p-nitrotulene in 83 % yield. The presence of AuNPs on the Mn 3 O 4 surface enhances the catalytic activity for the formation of the desired nitroarene. A reasonable mechanism was proposed including the plausible formation of two intermediates, the corresponding N-aryl hydroxylamine and the nitrosoarene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.