Roads fragment landscapes and trigger human colonization and degradation of ecosystems, to the detriment of biodiversity and ecosystem functions. The planet's remaining large and ecologically important tracts of roadless areas sustain key refugia for biodiversity and provide globally relevant ecosystem services. Applying a 1-kilometer buffer to all roads, we present a global map of roadless areas and an assessment of their status, quality, and extent of coverage by protected areas. About 80% of Earth's terrestrial surface remains roadless, but this area is fragmented into ~600,000 patches, more than half of which are <1 square kilometer and only 7% of which are larger than 100 square kilometers. Global protection of ecologically valuable roadless areas is inadequate. International recognition and protection of roadless areas is urgently needed to halt their continued loss.
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
We examined six groups of taxa-woody plants, aquatic and terrestrial herpetofauna, small terrestrial birds, orchids, and Orthoptera-to determine their efficiency as biodiversity indicators in the Dadia Reserve in northern Greece. We investigated the indicator value of each group by examining the degree of congruence of its species-richness pattern with that of the other groups and the efficiency of its complementary network in conserving the other groups and biodiversity. The two techniques differed in many respects in their outputs, but they both showed woody plants as the best biodiversity indicator. There was in general low congruence in the species richness patterns across the different groups. Significant relationships were found between woody plants and birds, Orthoptera and terrestrial herpetofauna, and birds and aquatic herpetofauna. None of the optimal complementary networks of the groups we examined protected all species of the other groups. Nevertheless, the complementary network of woody plants adequately conserved all groups except orchids. We conclude that the principle of complementarity must be integrated into the methodology of evaluating an indicator. In an applied context, our results provide a scientific background on which to base a biomonitoring program for the Dadia Reserve. In a wider scope, if the group of woody plants prove an adequate biodiversity indicator for other Mediterranean areas as well, this will be important because it will facilitate conservation-related decisions for the entire Mediterranean region.Resumen: Examinamos seis grupos de taxones -plantas leñosas, herpetofauna acuática, herpetofauna terrestre, aves terrestres pequeñas, orquídeas y Orthoptera -para determinar su eficiencia como indicadores de biodiversidad en la Reserva Dadia en el norte de Grecia. Investigamos el valor de cada grupo como indicador examinando el grado de congruencia de su patrón de riqueza de especies con el de otros grupos y la eficiencia de su red complementaria para conservar a los otros grupos y a la biodiversidad. Las dos técnicas difirieron en muchos aspectos de sus resultados, pero ambos mostraron a las plantas leñosas como el mejor indicador de biodiversidad. Hubo poca congruencia en los patrones de riqueza de especies en los diferentes grupos. Se encontraron relaciones significativas entre plantas leñosas y aves, Orthoptera y herpetofauna terrestre, y aves y herpetofauna acuática. Ninguna de las redes complementariasóptimas de los grupos que examinamos protegió a todas las especies de los otros grupos. Sin embargo, la red complementaria de plantas leñosas 668 Biodiversity IndicatorsKati et al.conservó adecuadamente a todos los grupos excepto las orquídeas. Concluimos que se debe integrar el principio de complementariedad a la metodología para evaluar un indicador. En un contexto aplicado, nuestros resultados proporcionan un antecedente científico sobre el cual basar un programa de biomonitoreo para la Reserva Dadia. En una visión más amplia, si el grupo de plantas leñosas también resulta u...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.