Platelet integrin alpha(IIb)beta(3) contains an acidic membrane distal motif, 1000LEEDDEEGE1008, in the cytoplasmic domain of the alpha(IIb) subunit. We showed that a lipid-modified peptide corresponding to the above region, palmitoyl-K-LEEDDEEGE (pal-K-1000-1008), is platelet permeable and has inhibited platelet aggregation induced by 0.4 U/ml of thrombin (IC50 = 164 microM). Moreover the peptide inhibited both Fibrinogen and PAC-1, binding to activated platelets. The non palmitoylated analog was inactive. A modified, scrambled acidic peptide (palmitoyl-K-GDDEELEEE), showed significant lower inhibitory activity than pal-K-1000-1008. A palmitoylated peptide corresponding to the membrane proximal cytoplasmic domain of alpha(IIb), 989KGVFFKR995 (pal-989-995), is known to specifically induce platelet aggregation. Pal-K-1000-1008 was an inhibitor of human washed platelet aggregation induced by pal-K-989-995 (IC50 = 15 microM). Moreover, pal-K-1000-1008 inhibited phosphorylation of ERK and FAK, two protein kinases involved in platelet activation and aggregation. Our results favour the assumption that the interaction of the membrane proximal sequence 989KGVFFKR995 of the cytoplasmic domain of alpha(IIb) with the acidic terminal 1000LEEDDEEGE1008 motif may be an important structural factor in platelet signaling, leading to platelet activation and aggregation.
αβ, the major platelet integrin, plays a central role in hemostasis and thrombosis. Upon platelet activation, conformation of αβ changes and allows fibrinogen binding and, subsequently, platelet aggregation. It was previously shown that a lipid-modified platelet permeable peptide, which corresponds to the intracellular acidic membrane distal sequence LEEDDEEGE of α (pal-K-LEEDDEEGE or pal-K-1000-1008), inhibits thrombin-induced human platelet aggregation, by inhibiting talin association with the integrin. YMESRADR, a peptide corresponding to the extracellular sequence 313-320 of α, is also a potent platelet aggregation inhibitor by mimicking the effect of a clasp between the head domains of α and β. The aim of the present study was to investigate the synergistic effect of the intra- and extracellular- peptide inhibitors on platelet aggregation, as well as on the phosphorylation of two signaling proteins, focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Platelet preincubation with Pal-K-LEEDDEGE followed by YMESRADR showed a synergistic inhibitory activity on platelet aggregation. Platelet incubation with threshold inhibitory concentrations of both peptides provoked almost the total inhibition of aggregation, PAC-1 binding, and fibrinogen binding, but not P-selectin exposure on activated platelets' surface. Like RGDS peptide, this mixture inhibits FAK phosphorylation whose phosphorylation is well known to be consecutive to the aggregation (postoccupancy events). However, in contrast to RGDS peptide that enhances ERK phosphorylation and activation, the mixture of threshold inhibitory concentrations of Pal-K-LEEDDEEGE and YMESRADR inhibits ERK phosphorylation. We suggest that the use of the intracellular in combination with the extracellular peptide inhibitor, acting with a non-RGD-like mechanism, may provide an alternative way to antagonize integrin αβ activation.
The αIIb cytoplasmic domain of platelet integrin αIIbβ3 contains an unorganized acidic membrane-distal (1000)LEEDDEEGE(1008) region. We have shown that a platelet permeable peptide corresponding to the above region the palmitoyl-K-LEEDDEEGE (pal-K-1000-1008) inhibits platelet aggregation induced by thrombin or by pal-K-989-995, a palmitoylated peptide corresponding to the membrane-proximal αIIb cytoplasmic domain (989)KVGFFKR(995). We now tested the anti-aggregatory activity of (i) a lipid-modified scrambled acidic peptide (pal-K-GDDEELEEE), (ii) two smaller peptides derived from the acidic amino sequence: palmitoyl-K-(1000)LEEDDE(1005) (pal-K-1000-1005) and palmitoyl-K-(1005)EEGE(1008) (pal-K-1005-1008) and (iii) lipid-modified palmitoyl-acidic peptides with alanine (Ala) substitution at residues 1001, 1003, 1004 and 1005 and one peptide with a double Ala substitution at residues 1001 and 1004 of the 1000-1008 sequence. All the peptides tested showed an inhibitory activity, however, the palmitoylated peptide with the natural and the whole acidic sequence, being the most active. Our results suggest that the whole acidic sequence, rather than some specific amino acids, contributes to the aggregation inhibitory activity. The inhibitory peptide, pal-K-1000-1008, inhibited the association of talin with αIIbβ3 in thrombin-activated platelets, as demonstrated by co-immunoprecipitation experiments, while the scrambled peptide was inefficient. We suggest that, by interacting with αIIb cytoplasmic domain, pal-K-1000-1008 has an anti-aggregatory inhibitory activity due to a specific inhibition of talin binding to αIIbβ3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.