Complex systems have become a research area with increasing interest over the last years. The emergence of new technologies, the increase in computational power with reduced resources and cost, the integration of the physical world with computer based systems has created the possibility of significantly improving the quality of life of humans. While a significant degree of automation within these systems exists and has been provided in the past decade with examples of the smart homes and energy efficient buildings, a paradigm shift towards autonomy has been noted. The need for autonomy requires the extraction of a model; while a strict mathematical formulation usually exists for the individual subsystems, finding a complete mathematical formulation for the complex systems is a near impossible task to accomplish. For this reason, methods such as the Fuzzy Cognitive Maps (FCM) have emerged that are able to provide with a description of the complex system. The system description results from empirical observations made from experts in the related subject – integration of expert’s knowledge – that provide the required cause-effect relations between the interacting components that the FCM needs in order to be formulated. Learning methods are employed that are able to improve the formulated model based on measurements from the actual system. The FCM method, that is able to inherently integrate uncertainties, is able to provide an adequate model for the study of a complex system. With the required system model, the next step towards the development of a autonomous systems is the creation of a control scheme. While FCM can provide with a system model, the system representation proves inadequate to be utilized to design classic model based controllers that require a state space or frequency domain representation. In state space representation, the state vector contains the variables of the system that can describe enough about the system to determine its future behavior in absence of external variables. Thus, within the components – the nodes of the FCM, ideally those can be identified that constitute the state vector of the system. In this work the authors propose the creation of a state feedback control law of complex systems via Fuzzy Cognitive Maps. Given the FCM representation of a system, initially the components-states of the system are identified. Given the identified states, a FCM representation of the controller occurs where the controller parameters are the weights of the cause-effect relations of the system. The FCM of the system then is augmented with the FCM of the controller. An example of the proposed methodology is given via the use of the cart-pendulum system, a common benchmark system for testing the efficiency of control systems.
The energy sector worldwide faces significant challenges that everyday become even more acute. Innovative technologies and energy efficiency measures are nowadays well known and widely spread, and the main issue is to identify the more effective and reliable in the long term. In order to do so the decision maker has to compensate many factors. This article investigates the feasibility of the application of new intelligent control methods in modeling and controlling the performance of a building. For the first time a performance comparison of Fuzzy Logic vs Fuzzy Cognitive Maps (FCMs) theories is performed and interesting results are presented. Multi-level intelligent controllers to manage the various parts of a building's automation and increase its energy efficiency are presented. For the first time the Building Energy Management System has been modeled using FCMs. Simulation studies with real environmental data have been performed and useful results have been obtained and discussed. Challenging future research topics are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.