Abstract. Sparse representation of signals has been the focus of much research in the recent years. A vast majority of existing algorithms deal with vectors, and higher-order data like images are dealt with by vectorization. However, the structure of the data may be lost in the process, leading to a poorer representation and overall performance degradation. In this paper we propose a novel approach for sparse representation of positive definite matrices, where vectorization will destroy the inherent structure of the data. The sparse decomposition of a positive definite matrix is formulated as a convex optimization problem, which falls under the category of determinant maximization (MAXDET) problems [1], for which efficient interior point algorithms exist. Experimental results are shown with simulated examples as well as in real-world computer vision applications, demonstrating the suitability of the new model. This forms the first step toward extending the cornucopia of sparsity-based algorithms to positive definite matrices.
Research in the surveillance domain was confined for years in the military domain. Recently, as military spending for this kind of research was reduced and the technology matured, the attention of the research and development community turned to commercial applications of surveillance. In this paper we describe a state-of-the-art monitoring system developed by a corporate R&D lab in cooperation with the corresponding security business units. It represents a sizable effort to transfer some of the best results produced by computer vision research into a viable commercial product. Our description spans both practical and technical issues. From the practical point of view we analyze the state of the commercial security market, typical cultural differences between the research team and the business team and the perspective of the potential users of the technology. These are important issues that have to be dealt with or the surveillance technology will remain in the lab for a long time. From the technical point of view we analyze our algorithmic and implementation choices. We describe the improvements we introduced to the original algorithms reported in the literature in response to some problems that arose during field testing. We also provide extensive experimental results that highlight the strong points and some weaknesses of the prototype system.
A framework for robust foreground detection that works under difficult conditions such as dynamic background and moderately moving camera is presented in this paper. The proposed method includes two main components: coarse scene representation as the union of pixel layers, and foreground detection in video by propagating these layers using a maximum-likelihood assignment. We first cluster into "layers" those pixels that share similar statistics. The entire scene is then modeled as the union of such non-parametric layer-models. An in-coming pixel is detected as foreground if it does not adhere to these adaptive models of the background. A principled way of computing thresholds is used to achieve robust detection performance with a pre-specified number of false alarms. Correlation between pixels in the spatial vicinity is exploited to deal with camera motion without precise registration or optical flow. The proposed technique adapts to changes in the scene, and allows to automatically convert persistent foreground objects to background and re-convert them to foreground when they become interesting. This simple framework addresses the important problem of robust foreground and unusual region detection, at about 10 frames per second on a standard laptop computer. The presentation of the proposed approach is complemented by results on challenging real data and comparisons with other standard techniques.
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.