Summary.Although real-scale Semantic Web applications, such as Knowledge Portals and E-Marketplaces, require the management of voluminous resource metadata, sufficiently expressive declarative languages for metadata created according to the W3C RDF /S standard l are still missing. In answer to this need, we have designed a typed, functional query language, called RQL, whose novelty lies in its ability to smoothly combine schema and data querying. The purpose of this chapter is to present RQ L's formal data model and type system and illustrate its expressiveness by means of exemplary queries. RQL's formal foundations capture the RDF /S modeling primitives and provide a well-founded semantics for a declarative query language involving recursion and functional composition over complex description graphs. IntroductionIn the next evolutionary step of the Web, termed the Semantic Web [18.5], vast amounts of information resourees (data, doeuments, programs, ete.) will be made available along with various kinds of deseriptive information, i.e.,
Abstract. Page load time (PLT) is still the most common application Quality of Service (QoS) metric to estimate the Quality of Experience (QoE) of Web users. Yet, recent literature abounds with proposals for alternative metrics (e.g., Above The Fold, SpeedIndex and variants) that aim at better estimating user QoE. The main purpose of this work is thus to thoroughly investigate a mapping between established and recently proposed objective metrics and user QoE. We obtain ground truth QoE via user experiments where we collect and analyze 3,400 Web accesses annotated with QoS metrics and explicit user ratings in a scale of 1 to 5, which we make available to the community. In particular, we contrast domain expert models (such as ITU-T and IQX) fed with a single QoS metric, to models trained using our ground-truth dataset over multiple QoS metrics as features. Results of our experiments show that, albeit very simple, expert models have a comparable accuracy to machine learning approaches. Furthermore, the model accuracy improves considerably when building per-page QoE models, which may raise scalability concerns as we discuss.
Query optimization in RDF Stores is a challenging problem as SPARQL queries typically contain many more joins than equivalent relational plans, and hence lead to a large join order search space. In such cases, cost-based query optimization often is not possible. One practical reason for this is that statistics typically are missing in web scale setting such as the Linked Open Datasets (LOD). The more profound reason is that due to the absence of schematic structure in RDF, join-hit ratio estimation requires complicated forms of correlated join statistics; and currently there are no methods to identify the relevant correlations beforehand. For this reason, the use of good heuristics is essential in SPARQL query optimization, even in the case that are partially used with cost-based statistics (i.e., hybrid query optimization). In this paper we describe a set of useful heuristics for SPARQL query optimizers. We present these in the context of a new Heuristic SPARQL Planner (HSP) that is capable of exploiting the syntactic and the structural variations of the triple patterns in a SPARQL query in order to choose an execution plan without the need of any cost model. For this, we define the variable graph and we show a reduction of the SPARQL query optimization problem to the maximum weight independent set problem. We implemented our planner on top of the MonetDB open source column-store and evaluated its effectiveness against the state-ofthe-art RDF-3X engine as well as comparing the plan quality with a relational (SQL) equivalent of the benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.