Two major mechanisms have been causally implicated in the establishment of cellular senescence: the activation of the DNA damage response (DDR) pathway and the formation of senescence-associated heterochromatic foci (SAHF). Here we show that in human fibroblasts resistant to premature p16INK4a induction, SAHF are preferentially formed following oncogene activation but are not detected during replicative cellular senescence or on exposure to a variety of senescence-inducing stimuli. Oncogene-induced SAHF formation depends on DNA replication and ATR (ataxia telangiectasia and Rad3-related). Inactivation of ATM (ataxia telangiectasia mutated) or p53 allows the proliferation of oncogene-expressing cells that retain increased heterochromatin induction. In human cancers, levels of heterochromatin markers are higher than in normal tissues, and are independent of the proliferative index or stage of the tumours. Pharmacological and genetic perturbation of heterochromatin in oncogene-expressing cells increase DDR signalling and lead to apoptosis. In vivo, a histone deacetylase inhibitor (HDACi) causes heterochromatin relaxation, increased DDR, apoptosis and tumour regression. These results indicate that heterochromatin induced by oncogenic stress restrains DDR and suggest that the use of chromatin-modifying drugs in cancer therapies may benefit from the study of chromatin and DDR status of tumours.
Summary
The tumor suppressor p53 is frequently mutated in human cancer. Common mutant p53 (mutp53) isoforms can actively promote cancer through gain-of-function (GOF) mechanisms. We report that mutp53 prolongs TNF-α-induced NF-κB activation in cultured cells and intestinal organoid cultures. Remarkably, when exposed to dextran sulfate sodium (DSS), mice harboring a germline p53 mutation develop severe chronic inflammation and persistent tissue damage, and are highly prone to inflammation-associated colon cancer. This mutp53 GOF is manifested by rapid onset of flat dysplastic lesions that progress to invasive carcinoma with mutp53 accumulation and augmented NF-κB activation, faithfully recapitulating features frequently observed in human colitis-associated colorectal cancer (CAC). These findings might explain the early appearance of p53 mutations in human CAC.
The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4-CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery-an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.