The DNA damage response (DDR) arrests cell-cycle progression until damage is removed. DNA damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously-induced persistent DDR markers are associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break (DSB) next to telomeric sequences resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a DSB induces persistent DNA damage and DDR. Linear telomeric DNA, but not circular or scrambled DNA, induces a prolonged checkpoint in normal cells. In terminally-differentiated tissues of old primates, DDR markers accumulate at telomeres which are not critically short. We propose that linear genomes are not uniformly reparable and telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence.
Two major mechanisms have been causally implicated in the establishment of cellular senescence: the activation of the DNA damage response (DDR) pathway and the formation of senescence-associated heterochromatic foci (SAHF). Here we show that in human fibroblasts resistant to premature p16INK4a induction, SAHF are preferentially formed following oncogene activation but are not detected during replicative cellular senescence or on exposure to a variety of senescence-inducing stimuli. Oncogene-induced SAHF formation depends on DNA replication and ATR (ataxia telangiectasia and Rad3-related). Inactivation of ATM (ataxia telangiectasia mutated) or p53 allows the proliferation of oncogene-expressing cells that retain increased heterochromatin induction. In human cancers, levels of heterochromatin markers are higher than in normal tissues, and are independent of the proliferative index or stage of the tumours. Pharmacological and genetic perturbation of heterochromatin in oncogene-expressing cells increase DDR signalling and lead to apoptosis. In vivo, a histone deacetylase inhibitor (HDACi) causes heterochromatin relaxation, increased DDR, apoptosis and tumour regression. These results indicate that heterochromatin induced by oncogenic stress restrains DDR and suggest that the use of chromatin-modifying drugs in cancer therapies may benefit from the study of chromatin and DDR status of tumours.
Primary mouse embryonic fibroblasts (MEFs) are a popular tool for molecular and cell biology studies. However, when MEFs are grown in vitro under standard tissue culture conditions, they proliferate only for a limited number of population doublings (PD) and eventually undergo cellular senescence. Presently, the molecular mechanisms halting cell cycle progression and establishing cellular senescence under these conditions are unclear. Here, we show that a robust DNA damage response (DDR) is activated when MEFs undergo replicative cellular senescence. Senescent cells accumulate senescence-associated DDR foci (SDFs) containing the activated form of ATM, its phosphorylated substrates and gammaH2AX. In senescent MEFs, DDR markers do not preferentially accumulate at telomeres, the end of linear chromosomes. It has been observed that proliferation of MEFs is extended if they are cultured at low oxygen tension (3% O(2)). We observed that under these conditions, DDR is not observed and senescence is not established. Importantly, inactivation of ATM in senescent MEFs allows escape from senescence and progression through the S-phase. Therefore, MEFs undergoing cellular senescence arrest their proliferation due to the activation of a DNA damage checkpoint mediated by ATM kinase. Finally, we observed that spontaneously immortalized proliferating MEFs display markers of an activated DDR, indicating the presence of chromosomal DNA damage in these established cell lines.
Aims: Recombinant PEGylated human granulocyte colony-stimulating factor (pegfilgrastim) is indicated for the reduction of chemotherapy-induced neutropenia and prevention of febrile neutropenia. Biosimilar pegfilgrastim is expected to reduce the financial burden of this complication of chemotherapy. The aim of this study was to demonstrate biosimilarity between Sandoz biosimilar pegfilgrastim and its US-and EU-approved reference biologics.Methods: Phase I, randomized, double-blind, single-dose, 3-period, 6-sequence cross-over, multicentre study to evaluate the pharmacokinetics, pharmacodynamics, safety and immunogenicity of Sandoz biosimilar pegfilgrastim with US-and EUreferences in healthy adults.Results: Pharmacokinetic and pharmacodynamic similarity was demonstrated between the 3 biologics, as the 90% confidence interval for all primary pharmacokinetic and pharmacodynamic endpoint comparisons were contained within the predefined similarity margins of 0.80-1.25. Safety, immunogenicity and tolerability were also similar.Conclusions: Sandoz biosimilar pegfilgrastim demonstrated pharmacokinetic and pharmacodynamic similarity to both US-and EU-reference biologics. No meaningful differences in safety, local tolerability and immunogenicity were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.