Electromyography is a diagnostic medical procedure used to assess the state of a muscle and its related nerves. Electromyography signals are monitored to detect neuromuscular abnormalities and diseases but can also prove useful in decoding movement-related signals. This information is vital to controlling prosthetics in a more natural way. To this end, a novel analog integrated voting classifier is proposed as a hand gesture recognition system. The voting classifiers utilize 3 separate centroid-based classifiers, each one attached to a different electromyographic electrode and a voting circuit. The main building blocks of the architecture are bump and winner-take-all circuits. To confirm the proper operation of the proposed classifier, its post-layout classification results (91.2% accuracy) are compared to a software-based implementation (93.8% accuracy) of the same voting classifier. A TSMC 90 nm CMOS process in the Cadence IC Suite was used to design and simulate the following circuits and architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.