This paper extends and advances our recently introduced two-factor Honeytoken authentication method by incorporating blockchain technology. This novel approach strengthens the authentication method, preventing various attacks, including tampering attacks. Evaluation results demonstrate that integrating blockchain into the Honeytoken method can enhance performance and efficiency.
The danger is still very large from cross site scripting attacks. When designing web applications We must follow as much as we can prevention rules and don’t leave any loophole to our programs. Experience is a great factor for programmers to know these attacks and for a trainee programmer is a difficult task to spot all the weak points. In this article we present a tutorial on launching an XSS attack and also we propose simple solutions.
The majority of systems rely on user authentication on passwords, but passwords have so many weaknesses and widespread use that easily raise significant security concerns, regardless of their encrypted form. Users hold the same password for different accounts, administrators never check password files for flaws that might lead to a successful cracking, and the lack of a tight security policy regarding regular password replacement are a few problems that need to be addressed. The proposed research work aims at enhancing this security mechanism, prevent penetrations, password theft, and attempted break-ins towards securing computing systems. The selected solution approach is two-folded; it implements a two-factor authentication scheme to prevent unauthorized access, accompanied by Honeyword principles to detect corrupted or stolen tokens. Both can be integrated into any platform or web application with the use of QR codes and a mobile phone.
Despite the rapid development of technology, computer systems still rely heavily on passwords for security, which can be problematic. Although multi-factor authentication has been introduced, it is not completely effective against more advanced attacks. To address this, this study proposes a new two-factor authentication method that uses honeytokens. Honeytokens and Google Authenticator are combined to create a stronger authentication process. The proposed approach aims to provide additional layers of security and protection to computer systems, increasing their overall security beyond what is currently provided by single-password or standard two-factor authentication methods. The key difference is that the proposed system resembles a two-factor authentication but, in reality, works like a multi-factor authentication system. Multi-factor authentication (MFA) is a security technique that verifies a user’s identity by requiring multiple credentials from distinct categories. These typically include knowledge factors (something the user knows, such as a password or PIN), possession factors (something the user has, such as a mobile phone or security token), and inherence factors (something the user is, such as a biometric characteristic like a fingerprint). This multi-tiered approach significantly enhances protection against potential attacks. We examined and evaluated our system’s robustness against various types of attacks. From the user’s side, the system is as friendly as a two-factor authentication method with an authenticator and is more secure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.