The RNA polymerase II complex (pol II) is responsible for transcription of all $21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly diseasecausing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Precision medicine (PM) can be defined as a predictive, preventive, personalized, and participatory healthcare service delivery model. Recent developments in molecular biology and information technology make PM a reality today through the use of massive amounts of genetic, ‘omics’, clinical, environmental, and lifestyle data. With cancer being one of the most prominent public health threats in developed countries, both the research community and governments have been investing significant time, money, and efforts in precision cancer medicine (PCM). Although PCM research is extremely promising, a number of hurdles still remain on the road to an optimal integration of standardized and evidence-based use of PCM in healthcare systems. Indeed, PCM raises a number of technical, organizational, ethical, legal, social, and economic challenges that have to be taken into account in the development of an appropriate health policy framework. Here, we highlight some of the more salient issues regarding the standards needed for integration of PCM into healthcare systems, and we identify fields where more research is needed before policy can be implemented. Key challenges include, but are not limited to, the creation of new standards for the collection, analysis, and sharing of samples and data from cancer patients, and the creation of new clinical trial designs with renewed endpoints. We believe that these issues need to be addressed as a matter of priority by public health policymakers in the coming years for a better integration of PCM into healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.