The Network-on-Chip (NoC) router buffers are instrumental in the overall operation of Chip Multi-Processors (CMP), because they facilitate the creation of Virtual Channels (VC). Both the NoC routing algorithm and the CMP's cache coherence protocol rely on the presence of VCs within the NoC for correct functionality. In this article, we introduce a novel concept that completely decouples the number of supported VCs from the number of VC buffers physically present in the design. Virtual Channel Renaming enables the virtualization of existing virtual channels, in order to support an arbitrarily large number of VCs. Hence, the CMP can (a) withstand the presence of faulty VCs, and (b) accommodate routing algorithms and/or coherence protocols with disparate VC requirements. The proposed VC Renamer architecture incurs minimal hardware overhead to existing NoC designs and is shown to exhibit excellent performance without affecting the router's critical path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.