The focus on fillers' influence in high‐performance polymer composites has undergone a transformation. Additionally, the utilization of additive manufacturing (AM) in this venture has aroused the curiosity of investigators to empirically enumerate the characteristics of such composites for numerous applications. Consequently, this investigation aims to assess the thermal behavior of polyethylene terephthalate glycol (PETG) polymers reinforced with graphene flakes. As mentioned above, various weight ratios of the constituents are manufactured, blended, and extruded into six distinct varieties of 3D‐printable filaments utilizing a twin‐screw extruder. In accordance with the relevant American Society for Testing and Materials (ASTM) standards, we perform the thermal characterization of the compounded PETG/graphene pellets using Fourier transform‐infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results reveal that enhancing the concentration of graphene augments the thermal properties of the composites. Furthermore, the FTIR investigation contributes to graphene's proficiency in absorbing infrared radiation and curbing micro‐vibrations. Additionally, the study highlights the way in which chemical interactions between graphene and PETG impact the general effectiveness of the composites.
The current work investigates the influence of graphene on the mechanical properties of additive-manufactured polyethylene terephthalate glycol (Prince Edward IslandTG) composites. To this end, the graphene content is varied by 0.02 wt.%, 0.04 wt.%, 0.08 wt.%, and 0.1 wt.% to obtain different compositions of PETG/graphene composites. The filaments were prepared by mixing the PETG pellets and graphene flakes into the required quantity. Further, the mixture is extruded using a single screw extruder into small filaments with a 1.75 mm diameter. Using fused deposition modelling (FDM), the specimens were 3D printed following ASTM requirements. The fabricated PETG/graphene specimens are assessed for their mechanical properties, such as tensile, compression, flexural and impact characteristics. Finally, the fractography of the tested specimens is analysed using a scanning electron microscope (SEM). The experimentation of PETG/graphene composites reveals that the optimum mechanical properties can be achieved when PETG is reinforced with 0.04 wt.% of graphene. As opposed to virgin PETG, an increment of 89.71%, 81.76%, 21.60%, and 81.25% is witnessed in the tensile, compression, flexural, and impact strengths of the PETG/0.04 wt.% graphene composite. The outcome of this work is believed to pave the way for broadening the applications of graphene-based composites in electromechanical and smart structure engineering domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.