Human immunodeficiency virus (HIV)-associated dementia (HAD) is common among clade B HIV-infected individuals, but less common and less severe among individuals infected with clade C HIV-1, suggesting clade-specific differences in neuropathogenicity. Although differences in neuropathogenicity have been investigated in vitro using viral proteins responsible for HAD, to date there are no virological studies using animal models to address this issue. Therefore, we investigated neuropathogenesis induced by HIV-1 clades using the severe combined immune deficiency (SCID) mouse HIV encephalitis model, which involves intracranial injection of macrophages infected with representative clade B (HIV-1 ADA ) or clade C (HIV-1 Indie-C1 ) HIV-1 isolates into SCID mice. In cognitive tests, mice exposed to similar inputs of HIV-1 clade C made fewer memory errors than those exposed to HIV-1 clade B. Histopathological analysis of mice exposed to clade B exhibited greater astrogliosis and increased loss of neuronal network integrity. In vitro experiments revealed differences in a key characteristic of HIV-1 that influences HAD, increased monocyte infiltration. HIV-1 Indie-C1 -infected macrophages recruited monocytes poorly in vitro compared with HIV-1 ADA -infected macrophages. Monocyte recruitment was HIV-1 Tat and CCL2 dependent. This is the first demonstration, ever since HIV neuropathogenesis was first recognized, that viral genetic differences between clades can affect disease severity and that such studies help identify key players in neuropathogenesis by HIV-1.
As the HIV-1 epidemic enters its fourth decade, HIV-1 associated neurological disorders (HAND) continue to be a major concern in the infected population, despite the widespread use of anti-retroviral therapy. Advancing age and increased life expectancy of the HIV-1 infected population have been shown to increase the risk of cognitive dysfunction. Over the past 10 years, there has been a significant progress in our understanding of the mechanisms and the risk factors involved in the development of HAND. Key events that lead up to neuronal damage in HIV-1 infected individuals can be categorized based on the interaction of HIV-1 with the various cell types, including but not limited to macrophages, brain endothelial cells, microglia, astrocytes and the neurons. This review attempts to decipher these interactions, beginning with HIV-1 infection of macrophages and ultimately resulting in the release of neurotoxic viral and host products. These include: interaction with endothelial cells, resulting in the impairment of the blood brain barrier; interaction with the astrocytes, leading to metabolic and neurotransmitter imbalance; interactions with resident immune cells in the brain, leading to release of toxic cytokines and chemokines. We also review the mechanisms underlying neuronal damage caused by the factors mentioned above. We have attempted to bring together recent findings in these areas to help appreciate the viral and host factors that bring about neurological dysfunction. In addition, we review host factors and viral genotypic differences that affect phenotypic pathological outcomes, as well as recent advances in treatment options to specifically address the neurotoxic mechanisms in play.
BackgroundHIV-1 Clade C (Subtype C; HIV-1C) is responsible for greater than 50% of infections worldwide. Unlike clade B HIV-1 (Subtype B; HIV-1B), which is known to cause HIV associated dementia (HAD) in approximately 15% to 30% of the infected individuals, HIV-1C has been linked with lower prevalence of HAD (0 to 6%) in India and Ethiopia. However, recent studies report a higher prevalence of HAD in South Africa, Zambia and Botswana, where HIV-1C infections predominate. Therefore, we examined whether Southern African HIV-1C is genetically distinct and investigated its neurovirulence. HIV-1 Tat protein is a viral determinant of neurocognitive dysfunction. Therefore, we focused our study on the variations seen in tat gene and its contribution to HIV associated neuropathogenesis.ResultsA phylogenetic analysis of tat sequences of Southern African (South Africa and Zambia) HIV isolates with those from the geographically distant Southeast Asian (India and Bangladesh) isolates revealed that Southern African tat sequences are distinct from Southeast Asian isolates. The proportion of HIV − 1C variants with an intact dicysteine motif in Tat protein (C30C31) was significantly higher in the Southern African countries compared to Southeast Asia and broadly paralleled the high incidence of HAD in these countries. Neuropathogenic potential of a Southern African HIV-1C isolate (from Zambia; HIV-1C1084i), a HIV-1C isolate (HIV-1IndieC1) from Southeast Asia and a HIV-1B isolate (HIV-1ADA) from the US were tested using in vitro assays to measure neurovirulence and a SCID mouse HIV encephalitis model to measure cognitive deficits. In vitro assays revealed that the Southern African isolate, HIV-1C1084i exhibited increased monocyte chemotaxis and greater neurotoxicity compared to Southeast Asian HIV-1C. In neurocognitive tests, SCID mice injected with MDM infected with Southern African HIV-1C1084i showed greater cognitive dysfunction similar to HIV-1B but much higher than those exposed to Southeast Asian HIV − 1C.ConclusionsWe report here, for the first time, that HIV-1C from Southern African countries is genetically distinct from Southeast Asian HIV-1C and that it exhibits a high frequency of variants with dicysteine motif in a key neurotoxic HIV protein, Tat. Our results indicate that Tat dicysteine motif determines neurovirulence. If confirmed in population studies, it may be possible to predict neurocognitive outcomes of individuals infected with HIV-1C by genotyping Tat.
A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region which is appears in protease inhibitor (PI) failure Indian HIV-1C sequences (Odds Ratio 17.1, p<0.001) but naturally present in half of untreated Ethiopian sequences. The insertion will probably restore the ALIX mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of such insertion need to be evaluated in HIV-1C dominating regions were PI-drugs are being scaled up as second line treatment options.
Single-base deletions at nucleotide runs or ؊1 frameshifting by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) result from template slippage during polymerization. In crystal structures of HIV-1 RT complexed with DNA-DNA template-primer, the palm subdomain in the template cleft contacts the template backbone near the proposed site of slippage via the Glu 89 side chain. We investigated the role of Glu 89 in frameshifting by perturbing this interaction. Substitutions with Asp, Gly, Ala, Val, Ser, Thr, Asn, or Lys were created in recombinant HIV RT, and frameshift frequencies of the resulting mutant RTs were measured. All substitutions led to reduced ؊1 frameshifting by HIV-1 RT (2-40-fold). Interestingly, the suppression of ؊1 frameshifting frequently coincided with an enhancement of ؉1 frameshifting (3-47-fold) suggesting that Glu 89 can influence the slippage of both strands. Glu 89 substitutions also led to reduced rates of dNTP misincorporation that paralleled reductions in ؊1 frameshifting, suggesting a common structural mechanism for both classes of RT error. Our results reveal a major influence of Glu 89 on slippagemediated errors and dNTP incorporation fidelity. The crystal structure of HIV-1 RT reveals a salt bridge between Glu 89 and Lys 154 , which may facilitate ؊1 frameshifting; this concept is supported by the observed reduction in ؊1 frameshifting for K154A and K154R mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.