Background: A recent randomized phase II trial evaluated stereotactic ablative radiotherapy (SABR) in a group of patients with a small burden of oligometastatic disease (mostly with 1-3 metastatic lesions), and found that SABR was associated with a significant improvement in progression-free survival and a trend to an overall survival benefit, supporting progression to phase III randomized trials. Methods: Two hundred and ninety-seven patients will be randomized in a 1:2 ratio between the control arm (consisting of standard of care [SOC] palliative-intent treatments), and the SABR arm (consisting of SOC treatment + SABR to all sites of known disease). Randomization will be stratified by two factors: histology (prostate, breast, or renal vs. all others), and disease-free interval (defined as time from diagnosis of primary tumor until first detection of the metastases being treated on this trial; divided as ≤2 vs. > 2 years). The primary endpoint is overall survival, and secondary endpoints include progression-free survival, cost effectiveness, time to development of new metastatic lesions, quality of life (QoL), and toxicity. Translational endpoints include assessment of circulating tumor cells, cell-free DNA, and tumor tissue as prognostic and predictive markers, including assessment of immunological predictors of response and long-term survival. Discussion: This study will provide an assessment of the impact of SABR on survival, QoL, and cost effectiveness to determine if long-term survival can be achieved for selected patients with 1-3 oligometastatic lesions.
Background/Aims: Blocking estrogen signaling with endocrine therapies (Tamoxifen or Fulverstrant) is an effective treatment for Estrogen Receptor-α positive (ER+) breast cancer tumours. Unfortunately, development of endocrine therapy resistance (ETR) is a frequent event resulting in disease relapse and decreased overall patient survival. The long noncoding RNA, H19, was previously shown to play a significant role in estrogen-induced proliferation of both normal and malignant ER+ breast epithelial cells. We hypothesized that H19 expression is also important for the proliferation and survival of ETR cells. Methods: Here we utilized established ETR cell models; the Tamoxifen (Tam)-resistant LCC2 and the Fulvestrant and Tam cross-resistant LCC9 cells. Gain and loss of H19 function were achieved through lentiviral transduction as well as pharmacological inhibitors of the Notch and c-Met receptor signaling pathways. The effects of altered H19 expression on cell viability and ETR were assessed using three-dimensional (3D) organoid cultures and 2D co-cultures with low passage tumour-associated fbroblasts (TAFs). Results: Here we report that treating ETR cells with Tam or Fulvestrant increases H19 expression and that it’s decreased expression overcomes resistance to Tam and Fulvestrant in these cells. Interestingly, H19 expression is regulated by Notch and HGF signaling in the ETR cells and pharmacological inhibitors of Notch and c-MET signaling together significantly reverse resistance to Tam and Fulvestrant in an H19-dependent manner in these cells. Lastly, we demonstrate that H19 regulates ERα expression at the transcript and protein levels in the ETR cells and that H19 protects ERα against Fulvestrant-mediated downregulation of ERα protein. We also observed that blocking Notch and the c-MET receptor signaling also overcomes Fulvestrant and Tam resistance in 3D organoid cultures by decreasing ERα and H19 expression in the ETR cells. Conclusion: In endocrine therapy resistant breast cancer cells Fulvestrant is ineffective in decreasing ERα levels. Our data suggest that in the ETR cells, H19 expression acts as an ER modulator and that its levels and subsequently ERα levels can be substantially decreased by blocking Notch and c-MET receptor signaling. Consequently, treating ETR cells with these pharmacological inhibitors helps overcome resistance to Fulvestrant and Tamoxifen.
A recent transcriptome analysis of graded patient glioma samples led to identification of AEBP1 as one of the genes upregulated in majority of the primary GBM as against secondary GBM. Aebp1 is a transcriptional repressor that is involved in adipogenesis. It binds to AE-1 element present in the proximal promoter of aP2 gene that codes for fatty acid binding protein (FABP4). A comprehensive study was undertaken to elucidate the role of AEBP1 overexpression in glioblastoma. We employed complementary gene silencing approach to identify the genes that are perturbed in a glioma cell line (U87MG). A total of 734 genes were differentially regulated under these conditions (≥ 1.5-fold, P ≤ 0.05) belonging to different GO categories such as transcription regulation, cell growth, proliferation, differentiation, and apoptosis of which perturbation of 114 genes of these pathways were validated by quantitative real time PCR (qRT-PCR). This approach was subsequently combined with ChIP-chip technique using an Agilent human promoter tiling array to identify genomic binding loci of Aebp1 protein. A subset of these genes identified for Aebp1 occupancy was also validated by ChIP-PCR. Bioinformatics analysis of the promoters identified by ChIP-chip technique revealed a consensus motif GAAAT present in 66% of the identified genes. This consensus motif was experimentally validated by functional promoter assay using luciferase as the reporter gene. Both cellular proliferation and survival were affected in AEBP1-silenced U87MG and U138MG cell lines and a significant percentage of these cells were directed towards apoptosis.
Development of novel multimodality radiotherapy treatments in metastatic breast cancer, especially in the most aggressive triple negative (TNBC) subtype, is of significant clinical interest. Here we show that a novel inhibitor of Polo-Like Kinase 4 (PLK4), CFI-400945, in combination with radiation, exhibits a synergistic anti-cancer effect in TNBC cell lines and patient-derived organoids in vitro and leads to a significant increase in survival to tumor endpoint in xenograft models in vivo, compared to control or single-agent treatment. Further preclinical and proof-of-concept clinical studies are warranted to characterize molecular mechanisms of action of this combination and its potential applications in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.