Evidence suggests that the psychophysically determined Stiles-Crawford effect of the first kind (SCE) reflects waveguide properties of human photoreceptors. The peak of the SCE data set is assumed to reflect the principal alignment tendencies, and the spread (e.g., rho value, the curvature or width at half-height) is assumed to reflect the directionality (i.e., interreceptor differences in alignment) of the population of photoreceptors being tested. As such, disruption of the normal SCE can be used and/or has been used (1) to document early natural history of retinal pathology involving the photoreceptors, (2) to provide a firm rationale for therapeutic intervention, and (3) to provide a method for monitoring therapies designed to alter the natural course of retinal-disease processes. We report large-sample norms for foveal SCE peak location and spread (horizontal peak location, nasal 0.51 +/- 0.72, horizontal rho value 0.047 +/- 0.013, vertical peak location, superior 0.20 +/- 0.64, vertical rho value 0.053 +/- 0.012), compare these norms with values determined in other laboratories, and discuss the various mathematical forms used for the empirical description of SCE data sets.
Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed.
Purpose
To describe the various types of head-mounted display technology, their optical and human factors considerations, and their potential for use in low vision rehabilitation and vision enhancement.
Design
Expert perspective.
Methods
An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field.
Results
Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low vision aids. Devices vary by their relationship to the user’s eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion and user interface. These optical and human factors considerations are important when selecting head-mounted displays for specific applications and patient groups.
Conclusions
Head-mounted display technologies may offer advantages over conventional low vision aids. Future research should compare head-mounted displays to commonly prescribed low vision aids in order to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.