Twice‐a‐year migrations, one in autumn and the other in spring, occur within a discrete time window with striking alterations in the behavior and physiology, as regulated by the interaction of endogenous rhythms with prevailing photoperiod. These seasonal voyages are not isolated events; rather, they are part of an overall annual itinerary and remain closely coupled to the other annual subcycles, called seasonal life history states (LHSs). The success of migration depends on appropriate timing of the initiation and termination of each LHS, for example, reproduction, molt, summer nonmigratory, preautumn migratory (fattening and weight gain), autumn migratory, winter nonmigratory (wnM), prevernal (spring) migratory (fattening and weight gain), and spring migratory LHSs. Migration‐linked photoperiod‐induced changes include the body fattening and weight gain, nocturnal Zugunruhe (migratory restlessness), elevated triglycerides and free fatty acids, triiodothyronine and corticosterone levels. Hypothalamic expression of the thyroid hormone‐responsive dio2 and dio3, light‐responsive per2, cry1, and adcyap1 and th (tyrosine hydroxylase, involved in dopamine biosynthesis) genes also show significant changes with transition from wnM to the vernal migratory LHS. Concurrent changes in the expression of genes associated with lipid metabolism and its transport also occur in the liver and flight muscles, respectively. Interestingly, there are clear differences in the behavioral and physiological phenotypes, and associated molecular changes, between the autumn and vernal migrations. In this review, we discuss seasonal changes in the behavior and physiology, and present molecular insights into the development of migratory phenotypes in latitudinal avian migrants, with special reference to Palearctic‐Indian migratory buntings.
Food availability is a crucial ecological determinant of population size and community structure, and controls various life-history traits in most, if not all, species. Food availability is not constant; there are daily and seasonal differences in food abundance. When coupled to appetite (urge to eat), this is expressed as the eating schedule of a species. Food availability times affect daily and seasonal physiology and behaviour of organisms both directly (by affecting metabolic homeostasis) and indirectly (by altering synchronization of endogenous rhythms). Restricted food availability times may, for example, constrain reproductive output by limiting the number or quality of offspring or the number of reproductive attempts, as has been observed for nesting frequency in birds. Consuming food at the wrong time of day reduces the reproductive ability of a seasonal breeder, and can result in quality–quantity trade-offs of offspring. The food availability pattern serves as a conditioning environment, and can shape the activity of the genome by influencing chromatin activation/silencing; however, the functional linkage of food availability times with epigenetic control of physiology is only beginning to emerge. This Review gives insights into how food availability times, affected by changes in eating schedules and/or by alterations in feeding environment or lifestyle, could have hitherto unknown consequences on the physiology and reproductive fitness of seasonally breeding vertebrates and those that reproduce year round.
No abstract
Twice-a-year, large-scale movement of billions of birds across latitudinal gradients is one of the most fascinating behavioral phenomena seen among animals. These seasonal voyages in autumn southwards and in spring northwards occur within a discrete time window and, as part of an overall annual itinerary, involve close interaction of the endogenous rhythm at several levels with prevailing photoperiod and temperature. The overall success of seasonal migrations thus depends on their close coupling with the other annual sub-cycles, namely those of the breeding, post-breeding recovery, molt and non-migratory periods. There are striking alterations in the daily behavior and physiology with the onset and end of the migratory period, as shown by the phase inversions in behavioral (a diurnal passerine bird becomes nocturnal and flies at night) and neural activities. Interestingly, there are also differences in the behavior, physiology and regulatory strategies between autumn and spring (vernal) migrations. Concurrent molecular changes occur in regulatory (brain) and metabolic (liver, flight muscle) tissues, as shown in the expression of genes particularly associated with 24 h timekeeping, fat accumulation and the overall metabolism. Here, we present insights into the genetic basis of migratory behavior based on studies using both candidate and global gene expression approaches in passerine migrants, with special reference to Palearctic-Indian migratory blackheaded and redheaded buntings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.