The purpose of this paper is to remove the exponentially decaying DC offset in fault current waveforms using a deep neural network (DNN), even under harmonics and noise distortion. The DNN is implemented using the TensorFlow library based on Python. Autoencoders are utilized to determine the number of neurons in each hidden layer. Then, the number of hidden layers is experimentally decided by comparing the performance of DNNs with different numbers of hidden layers. Once the optimal DNN size has been determined, intensive training is performed using both the supervised and unsupervised training methodologies. Through various case studies, it was verified that the DNN is immune to harmonics, noise distortion, and variation of the time constant of the DC offset. In addition, it was found that the DNN can be applied to power systems with different voltage levels.
To make a correct decision during normal and transient states, the signal processing for relay protection must be completed and designated the correct task within the shortest given duration. This paper proposes to solve a dc offset fault current phasor with harmonics and noise based on a Deep Neural Network (DNN) autoencoder stack. The size of the data window was reduced to less than one cycle to ensure that the correct offset is rapidly computed. The effects of different numbers of the data samples per cycle are discussed. The simulations revealed that the DNN autoencoder stack reduced the size of the data window to approximately 90% of a cycle waveform, and that DNN performance accuracy depended on the number of samples per cycle (32, 64, or 128) and the training dataset used. The fewer the samples per cycle of the training dataset, the more training was required. After training using an adequate dataset, the delay in the correct magnitude prediction was better than that of the partial sums (PSs) method without an additional filter. Similarly, the proposed DNN outperformed the DNN-based full decay cycle dc offset in the case of converging time. Taking advantage of the smaller DNN size and rapid converging time, the proposed DNN could be launched for real-time relay protection and centralized backup protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.