It has been hypothesized that there is a fundamental conflict between horizontal (infectious) and vertical (intergenerational) modes of parasite transmission. Activities of a parasite that increase its rate of infectious transmission are presumed to reduce its host's fitness. This reduction in host fitness impedes vertical transmission of the parasite and causes a tradeoff between horizontal and vertical transmission. Given this tradeoff, and assuming no multiple infections (no within-host competition among parasites), a simple model predicts that the density of uninfected hosts in the environment should determine the optimum balance between modes of parasite transmission. When susceptible hosts are abundant, selection should favor increased rates of horizontal transfer, even at the expense of reduced vertical transmission. Conversely, when hosts are rare, selection should favor increased vertical transmission even at the expense of lower horizontal transfer. We tested the tradeoff hypothesis and these evolutionary predictions using conjugative plasmids and the bacteria that they infect. Plasmids were allowed to evolve for 500 generations in environments with different densities of susceptible hosts. The plasmid's rate of horizontal transfer by conjugation increased at the expense of host fitness, indicating a tradeoff between horizontal and vertical transmission. Also, reductions in conjugation rate repeatedly coincided with the loss of a particular plasmid-encoded antibiotic resistance gene. However, susceptible host density had no significant effect on the evolution of horizontal versus vertical modes of plasmid transmission. We consider several possible explanations for the failure to observe such an effect.
The fitness effect of mutations can be influenced by their interactions with the environment, other mutations, or both. Previously, we constructed 32 ( = 25) genotypes that comprise all possible combinations of the first five beneficial mutations to fix in a laboratory-evolved population of Escherichia coli. We found that (i) all five mutations were beneficial for the background on which they occurred; (ii) interactions between mutations drove a diminishing returns type epistasis, whereby epistasis became increasingly antagonistic as the expected fitness of a genotype increased; and (iii) the adaptive landscape revealed by the mutation combinations was smooth, having a single global fitness peak. Here we examine how the environment influences epistasis by determining the interactions between the same mutations in two alternative environments, selected from among 1,920 screened environments, that produced the largest increase or decrease in fitness of the most derived genotype. Some general features of the interactions were consistent: mutations tended to remain beneficial and the overall pattern of epistasis was of diminishing returns. Other features depended on the environment; in particular, several mutations were deleterious when added to specific genotypes, indicating the presence of antagonistic interactions that were absent in the original selection environment. Antagonism was not caused by consistent pleiotropic effects of individual mutations but rather by changing interactions between mutations. Our results demonstrate that understanding adaptation in changing environments will require consideration of the combined effect of epistasis and pleiotropy across environments.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) plays critical roles in host cell entry. Non-synonymous substitutions affecting S are not uncommon and have become fixed in a number of SARS-CoV-2 lineages. A subset of such mutations enable escape from neutralizing antibodies or are thought to enhance transmission through mechanisms such as increased affinity for the cell entry receptor, angiotensin-converting enzyme 2 (ACE2). Independent genomic surveillance programs based in New Mexico and Louisiana contemporaneously detected the rapid rise of numerous clade 20G (lineage B.1.2) infections carrying a Q677P substitution in S. The variant was first detected in the US on October 23, yet between 01 Dec 2020 and 19 Jan 2021 it rose to represent 27.8% and 11.3% of all SARS-CoV-2 genomes sequenced from Louisiana and New Mexico, respectively. Q677P cases have been detected predominantly in the south central and southwest United States; as of 03 Feb 2021, GISAID data show 499 viral sequences of this variant from the USA. Phylogenetic analyses revealed the independent evolution and spread of at least six distinct Q677H sub-lineages, with first collection dates ranging from mid-August to late November 2020. Four 677H clades from clade 20G (B.1.2), 20A (B.1.234), and 20B (B.1.1.220, and B.1.1.222) each contain roughly 100 or fewer sequenced cases, while a distinct pair of clade 20G clusters are represented by 754 and 298 cases, respectively. Although sampling bias and founder effects may have contributed to the rise of S:677 polymorphic variants, the proximity of this position to the polybasic cleavage site at the S1/S2 boundary are consistent with its potential functional relevance during cell entry, suggesting parallel evolution of a trait that may confer an advantage in spread or transmission. Taken together, our findings demonstrate simultaneous convergent evolution, thus providing an impetus to further evaluate S:677 polymorphisms for effects on proteolytic processing, cell tropism, and transmissibility.
Background Most hospitals use traditional infection prevention (IP) methods for outbreak detection. We developed the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT), which combines whole-genome sequencing (WGS) surveillance and machine learning (ML) of the electronic health record (EHR) to identify undetected outbreaks and the responsible transmission routes, respectively. Methods We performed WGS surveillance of healthcare-associated bacterial pathogens from November 2016 to November 2018. EHR ML was used to identify the transmission routes for WGS-detected outbreaks, which were investigated by an IP expert. Potential infections prevented were estimated and compared with traditional IP practice during the same period. Results Of 3165 isolates, there were 2752 unique patient isolates in 99 clusters involving 297 (10.8%) patient isolates identified by WGS; clusters ranged from 2–14 patients. At least 1 transmission route was detected for 65.7% of clusters. During the same time, traditional IP investigation prompted WGS for 15 suspected outbreaks involving 133 patients, for which transmission events were identified for 5 (3.8%). If EDS-HAT had been running in real time, 25–63 transmissions could have been prevented. EDS-HAT was found to be cost-saving and more effective than traditional IP practice, with overall savings of $192 408–$692 532. Conclusions EDS-HAT detected multiple outbreaks not identified using traditional IP methods, correctly identified the transmission routes for most outbreaks, and would save the hospital substantial costs. Traditional IP practice misidentified outbreaks for which transmission did not occur. WGS surveillance combined with EHR ML has the potential to save costs and enhance patient safety.
Unlike conventional antimicrobials, the study of bacterial resistance to silver nanoparticles (AgNPs) remains in its infancy and the mechanism(s) through which it evolves are limited and inconclusive. The central question remains whether bacterial resistance is driven by the AgNPs, released Ag(I) ions or a combination of these and other factors. Here, we show a specific resistance in an Escherichia coli K-12 MG1655 strain to subinhibitory concentrations of AgNPs, and not Ag(I) ions, as indicated by a statistically significant greater-than-twofold increase in the minimum inhibitory concentration occurring after eight repeated passages that was maintained after the AgNPs were removed and reintroduced. Whole-population genome sequencing identified a cusS mutation associated with the heritable resistance that possibly increased silver ion efflux. Finally, we rule out the effect of particle aggregation on resistance and suggest that the mechanism of resistance may be enhanced or mediated by flagellum-based motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.