The task of tracking the pose of an object with a known geometry from point cloud measurements arises in robot perception. It calls for a solution that is both accurate and robust, and can be computed at a rate that aligns with the needs of a control system that might make decisions based on it. The Iterative Closest Point (ICP) algorithm is widely used for this purpose, but it is susceptible to failure in practical scenarios. We present a robust and efficient solution for pose-from-point cloud estimation called the Pose Lookup Method (PLuM). PLuM is a probabilistic reward-based objective function that is resilient to measurement uncertainty and clutter. Efficiency is achieved through the use of lookup tables, which substitute complex geometric operations such as raycasting used in earlier solutions. Our results show millimetre accuracy and fast pose estimation in benchmark tests using triangulated geometry models, outperforming state-of-the-art ICP-based methods. These results are extended to field robotics applications, resulting in real-time haul truck pose estimation. By utilising point clouds from a LiDAR fixed to a rope shovel, the PLuM algorithm tracks a haul truck effectively throughout the excavation load cycle at a rate of 20 Hz, matching the sensor frame rate. PLuM is straightforward to implement and provides dependable and timely solutions in demanding environments.
This paper demonstrates the applicability of the combination of concurrent learning as a tool for parameter estimation and non-parametric Gaussian Process for online disturbance learning. A control law is developed by using both techniques sequentially in the context of feedback linearization. The concurrent learning algorithm estimates the system parameters of structured uncertainty without requiring persistent excitation, which are used in the design of the feedback linearization law. Then, a non-parametric Gaussian Process learns unstructured uncertainty. The closed-loop system stability for the nth-order system is proven using the Lyapunov stability theorem. The simulation results show that the tracking error is minimized (i) when true values of model parameters have not been provided, (ii) in the presence of disturbances introduced once the parameters have converged to their true values and (iii) when system parameters have not converged to their true values in the presence of disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.