One of the controllers used in load–frequency control systems is the PI controller, taking account of time delay originating from measurement and communication. In control systems, along with the use of the fractional-order controller, computing parameter space exhibited stable behaviour on the controller parameters and analysing its efficiency have become a significant issue. This study focuses on computing the effects of the fractional integral order (α) on the stable parameter space for the control of a one-area delayed load–frequency control system in the case of a fractional-order PI controller. The effect of time delay on the stable parameter space is also investigated at different fractional integral orders (α) in the time-delayed system with fractional-order PI controller. For this purpose, a characteristic equation of the delayed system with the fractional-order PI controller is obtained, and the stable parameter spaces of the controller are computed according to the fractional integral order (α) and time delay (τ) values using the stability boundary locus method, which is graphics based. Moreover, the generalized modified Mikhailov criterion is used for testing the stability region on the Kp−Ki plane. The obtained results verified that the stability region on the Kp−Ki plane change depending on the α and τ.
This study aims to determine the improvement effect on the delay margin if fractional-order proportional integral (PI) controller is used in the control of a singlearea delayed load frequency control (LFC) system. The delay margin of the system with fractional-order PI control has been obtained for various fractional integral orders and the effect of them has been shown on the delay margin as a third controller parameter. Furthermore, the stability of the system that is either under or over the delay margin is examined by generalized modified Mikhailov criterion. The stability results obtained have been confirmed numerically in time domain. It is demonstrated that the proposed controller for delayed LFC system provides more flexibility on delay margin according to integer-order PI controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.