The purposes of this study were to elucidate the effects of recombinant human interleukin 7 (rhIL-7) on proliferation as well as differentiation of human fetal thymocytes and to analyze the biochemical nature ofthe IL-7 receptorlinked transmembrane signal. In the absence of costimulants, rhIL-7 stimulated the in vitro proliferation and colony formation of CD4+CD8' double-positive immature fetal thymocytes. Furthermore, rhIL-7 promoted partial differentiation of immature thymocytes with a selective advantage for the development of CD4+CD8-single-positive thymocytes. Our observations suggest that IL-7 likely has an important regulatory role during the earliest stages of human T-cell ontogeny. Stimulation of fetal thymocytes with rhIL-7 resulted in enhance tyrosine phosphorylation of three distinct phosphoproteins with molecular masses of 72, 98, 123, and 190 kDa and induced a rapid and biphasic increase in the production of inositol 1,4,5-trisphosphate, which was inhibitable by the tyrosine protein kinase inhibitor genistein. Thus, the transmembrane signal triggered by engagement of the IL-7 receptor is intimately linked to a functional tyrosine protein kinase pathway and stimulates the inositol phospholipid turnover and proliferation, as well as selective differentiation to the CD4 lineage, by human fetal thymocytes.
The purposes of this study were to examine the biologic effects of the engagement of the interleukin-7 receptor (IL-7R) with recombinant human interleukin-7 (rhIL-7) in immunophenotypically distinct T-lineage acute lymphoblastic leukemia (ALL) blasts and to elucidate the biochemical nature of the IL-7R-linked transmembrane signal in rhIL-7-responsive T- lineage ALL blast populations. In the absence of costimulants, rhIL-7 stimulated the in vitro proliferation and colony formation of freshly isolated leukemic blasts from six to eight T-lineage ALL patients with a mean plating efficiency of 196 +/- 53 (background subtracted) colonies/10(5) blasts plated. Stimulation of T-lineage ALL blasts with rhIL-7 resulted in markedly enhanced tyrosine phosphorylation of six distinct phosphoproteins with molecular weights of 57, 72, 98, 123, 150, and 190 Kd, and induced a rapid increase in the production of inositol-1,4,5-trisphosphate (Ins-1,4,5-P3), which was inhibitable by the tyrosine-specific protein kinase inhibitor genistein, but not by the serine/threonine-specific protein kinase C inhibitor H7. Similarly, rhIL-7 stimulated Ins-1,4,5-P3 production in CEM-1.3 T-lineage ALL cells and this stimulation was inhibitable by the tyrosine-specific protein kinase inhibitors genistein and herbimycin A, but not by H-7. Thus, the transmembrane signal triggered by engagement of the IL-7R is intimately linked to a functional tyrosine-specific protein kinase pathway and stimulates the phosphoinositide (PI) turnover and proliferation of T-lineage ALL blasts. The presented data confirm and extend previous studies on the expression of functional IL-7R on T- lineage ALL blasts and support the hypothesis that IL-7 may play an important regulatory role in the biology of T-lineage ALL.
The purposes of this study were to examine the biologic effects of the engagement of the interleukin-7 receptor (IL-7R) with recombinant human interleukin-7 (rhIL-7) in immunophenotypically distinct T-lineage acute lymphoblastic leukemia (ALL) blasts and to elucidate the biochemical nature of the IL-7R-linked transmembrane signal in rhIL-7-responsive T- lineage ALL blast populations. In the absence of costimulants, rhIL-7 stimulated the in vitro proliferation and colony formation of freshly isolated leukemic blasts from six to eight T-lineage ALL patients with a mean plating efficiency of 196 +/- 53 (background subtracted) colonies/10(5) blasts plated. Stimulation of T-lineage ALL blasts with rhIL-7 resulted in markedly enhanced tyrosine phosphorylation of six distinct phosphoproteins with molecular weights of 57, 72, 98, 123, 150, and 190 Kd, and induced a rapid increase in the production of inositol-1,4,5-trisphosphate (Ins-1,4,5-P3), which was inhibitable by the tyrosine-specific protein kinase inhibitor genistein, but not by the serine/threonine-specific protein kinase C inhibitor H7. Similarly, rhIL-7 stimulated Ins-1,4,5-P3 production in CEM-1.3 T-lineage ALL cells and this stimulation was inhibitable by the tyrosine-specific protein kinase inhibitors genistein and herbimycin A, but not by H-7. Thus, the transmembrane signal triggered by engagement of the IL-7R is intimately linked to a functional tyrosine-specific protein kinase pathway and stimulates the phosphoinositide (PI) turnover and proliferation of T-lineage ALL blasts. The presented data confirm and extend previous studies on the expression of functional IL-7R on T- lineage ALL blasts and support the hypothesis that IL-7 may play an important regulatory role in the biology of T-lineage ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.