BackgroundIn the history of population genetics balancing selection has been considered as an important evolutionary force, yet until today little is known about its abundance and its effect on patterns of genetic diversity. Several well-known examples of balancing selection have been reported from humans, mice, plants, and parasites. However, only very few systematic studies have been carried out to detect genes under balancing selection. We performed a genome scan in Drosophila melanogaster to find signatures of balancing selection in a derived (European) and an ancestral (African) population. We screened a total of 34 genomes searching for regions of high genetic diversity and an excess of SNPs with intermediate frequency.ResultsIn total, we found 183 candidate genes: 141 in the European population and 45 in the African one, with only three genes shared between both populations. Most differences between both populations were observed on the X chromosome, though this might be partly due to false positives. Functionally, we find an overrepresentation of genes involved in neuronal development and circadian rhythm. Furthermore, some of the top genes we identified are involved in innate immunity.ConclusionOur results revealed evidence of genes under balancing selection in European and African populations. More candidate genes have been found in the European population. They are involved in several different functions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0857-z) contains supplementary material, which is available to authorized users.
BackgroundThe vertebrate head is a highly derived trait with a heavy concentration of sophisticated sensory organs that allow complex behaviour in this lineage. The head sensory structures arise during vertebrate development from cranial placodes and the neural crest. It is generally thought that derivatives of these ectodermal embryonic tissues played a central role in the evolutionary transition at the onset of vertebrates. Despite the obvious importance of head sensory organs for vertebrate biology, their evolutionary history is still uncertain.ResultsTo give a fresh perspective on the adaptive history of the vertebrate head sensory organs, we applied genomic phylostratigraphy to large-scale in situ expression data of the developing zebrafish Danio rerio. Contrary to traditional predictions, we found that dominant adaptive signals in the analyzed sensory structures largely precede the evolutionary advent of vertebrates. The leading adaptive signals at the bilaterian-chordate transition suggested that the visual system was the first sensory structure to evolve. The olfactory, vestibuloauditory, and lateral line sensory organs displayed a strong link with the urochordate-vertebrate ancestor. The only structures that qualified as genuine vertebrate innovations were the neural crest derivatives, trigeminal ganglion and adenohypophysis. We also found evidence that the cranial placodes evolved before the neural crest despite their proposed embryological relatedness.ConclusionsTaken together, our findings reveal pre-vertebrate roots and a stepwise adaptive history of the vertebrate sensory systems. This study also underscores that large genomic and expression datasets are rich sources of macroevolutionary information that can be recovered by phylostratigraphic mining.
We studied Drosophila melanogaster populations from Europe (the Netherlands and France) and Africa (Rwanda and Zambia) to uncover genetic evidence of adaptation to cold. We present here four lines of evidence for genes involved in cold adaptation from four perspectives: (i) the frequency of SNPs at genes previously known to be associated with chill-coma recovery time (CCRT), startle reflex (SR) and resistance to starvation stress (RSS) vary along environmental gradients and therefore among populations; (ii) SNPs of genes that correlate significantly with latitude and altitude in African and European populations overlap with SNPs that correlate with a latitudinal cline from North America; (iii) at the genomewide level, the top candidate genes are enriched in gene ontology (GO) terms that are related to cold tolerance; (iv) GO enriched terms from North American clinal genes overlap significantly with those from Africa and Europe. Each SNP was tested in 10 independent runs of Bayenv2, using the median Bayes factors to ascertain candidate genes. None of the candidate genes were found close to the breakpoints of cosmopolitan inversions, and only four candidate genes were linked to QTLs related to CCRT. To overcome the limitation that we used only four populations to test correlations with environmental gradients, we performed simulations to estimate the power of our approach for detecting selection. Based on our results, we propose a novel network of genes that is involved in cold adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.