Organic amendments are often reported to improve soil properties, promote plant growth, and improve crop yield. This study aimed to investigate the effects of the biochar and compost produced from sewage sludge and olive pomace on soil hydraulic properties, water flow, and P transport (i.e., sorption) using numerical modeling (HYDRUS-1D) applied to two soil types (Terra Rosa and Rendzina). Evaporation and leaching experiments on soil cores and repacked soil columns were performed to determine the soil water retention, hydraulic conductivity, P leaching potential, and P sorption capacity of these mixtures. In the majority of treatments, the soil water retention showed a small increase compared to the control soil. A reliable fit with the modified van Genuchten model was found, which was also confirmed by water flow modeling of leaching experiments (R2 0.99). The results showed a high P sorption in all the treatments (Kd 21.24 to 53.68 cm3 g−1), and a high model reliability when the inverse modeling procedure was used (R2 0.93–0.99). Overall, adding sewage sludge or olive pomace as compost or biochar improved the Terra Rosa and Rendzina water retention and did not increase the P mobility in these soils, proving to be a sustainable source of carbon and P-rich materials.
Nitrate leaching through soil layers to groundwater may cause significant degradation of natural resources. The aims of this study were: (i) to estimate soil hydraulic properties (SHPs) of the similar soil type with same management on various locations; (ii) to determine annual water dynamics; and (iii) to estimate the impact of subsoil horizon properties on nitrate leaching. The final goal was to compare the influence of different SHPs and layering on water dynamics and nitrate leaching. The study was conducted in central Croatia (Zagreb), at four locations on Calcaric Phaeozem, Calcaric Regosol, and Calcaric Fluvic Phaeozem soil types. Soil hydraulic parameters were estimated using the HYPROP system and HYPROP-FIT software. Water dynamics and nitrate leaching were evaluated using HYDRUS 2D/3D during a period of 365 days. The amount of water in the soil under saturated conditions varied from 0.422 to 0.535 cm3 cm–3 while the hydraulic conductivity varied from 3 cm day−1 to 990.9 cm day−1. Even though all locations have the same land use and climatic conditions with similar physical properties, hydraulic parameters varied substantially. The amount and velocity of transported nitrate (HYDRUS 2D/3D) were affected by reduced hydraulic conductivity of the subsoil as nitrates are primarily transported via advective flux. Despite the large differences in SHPs of the topsoil layers, the deeper soil layers, having similar SHPs, imposed a buffering effect preventing faster nitrate downward transport. This contributed to a very similar distribution of nitrates through the soil profile at the end of simulation period. This case study indicated the importance of carefully selecting relevant parameters in multilayered soil systems when evaluating groundwater pollution risk.
Erosion has been reported as one of the top degradation processes that negatively affect agricultural soils. The study objective was to identify hydropedological factors controlling soil water dynamics in erosion-affected hillslope vineyard soils. The hydropedological study was conducted at identically-managed Jastrebarsko (location I), and Jazbina (II) and (III) sites with Stagnosol soils. Soil Hydraulic Properties (SHP) were estimated on intact soil cores using Evaporation and WP4C methods; soil hydraulic functions were fitted using HYPROP-FIT software. For Apg and Bg/Btg horizons, uni- and bimodal soil hydraulic models could be well fitted to data; although, the bimodal model performed better in particular cases where data indicated non-uniform pore size distribution. With these SHP estimations, a one-year (2020) water flow scenario was simulated using HYDRUS-1D to compare water balance results obtained with uni- and bimodal hydraulic functions. Simulation results revealed relatively similar flux distribution at each hillslope position between the water balance components infiltration, surface runoff, and drainage. However, at the bottom profile at Jastrebarsko, bimodality of the hydraulic functions led to increased drainage. Soil water storage was reduced, and the vertical movement increased due to modified soil water retention curve shapes. Adequate parameterization of SHP is required to capture the hydropedological response of heterogenous erosion-affected soil systems.
Nutrient leaching from agricultural soils presents an economic loss for farmers and can degrade the quality of the surrounding environment. Thus, leachates from 18 in situ wick lysimeters, installed at 40 cm soil depth at the vineyard hilltop, backslope, and footslope intra- and inter-row area (SUPREHILL Critical Zone Observatory, Croatia) were collected monthly over two years and analyzed for major plant nutrient ions. Our objectives were to quantify nutrient losses via leaching from the hilltop towards the backslope and to the footslope, and to compare leaching from vine plant rows (intra-row) with grassed areas between vine rows (inter-row). We found that the concentrations of nitrate, orthophosphate, and potassium were significantly higher in leachates collected at the footslope as compared to the hilltop and backslope only at intra- and not at inter-row positions, while ammonium was independent of the slope and row positions. The vineyard intra-row is identified as the probable spatial origin of nutrient leaching along the slope, thus confirming spatially different contributions of overall hillslope to major plant nutrients leaching. The experimental field scheme used in this study, which separately analyses vineyard intra- and inter-row, was confirmed to be an adequate approach for optimizing vineyard management practices.
Soil and water loss due to traditional intensive types of agricultural management is widespread and unsustainable in Croatian croplands. In order to mitigate the accelerated land degradation, we studied different cropland soil management strategies to obtain feasible and sustainable agro-technical practices. A rainfall simulation experiment was conducted at 58 mm h–1 over 30 min on 10 paired plots (0.785 m2), bare and straw covered (2 t ha−1). The experiment was carried out in maize cultivation (Blagorodovac, Croatia) established on Stagnosols on slopes. Measurements were conducted during April (bare soil, after seeding), May (five-leaves stage), and June (intensive vegetative growth) making 60 rainfall simulations in total. Straw reduced soil and water losses significantly. The highest water, sediment loss, and sediment concentrations were identified in tillage plots during May. Straw addition resulted in delayed ponding (for 7%, 63%, and 50% during April, May and June, respectively) and runoff generation (for 37%, 32%, and 18% during April, May and June, respectively). Compared with the straw-mulched plot, tillage and bare soil increased water loss by 349%. Maize development reduced the difference between bare and straw-mulched plots. During May and June, bare plots increase water loss by 92% and 95%, respectively. The straw mulch reduced raindrop kinetic energy and sediment detachment from 9, 6, and 5 magnitude orders in April, May, and June, respectively. Overall, the straw mulch was revealed to be a highly efficient nature-based solution for soil conservation and maize cultivation protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.