Although DNA methylation epigenetically regulates development, data on global DNA methylation during development of limb buds (LBs) are scarce. We aimed to investigate the global DNA methylation developmental dynamics in rat LBs cultivated in a serum-supplemented (SS) and in chemically defined serum- and protein-free (SF) three-dimensional organ culture. Fischer rat front- and hind-LBs at 13th and 14th gestation days (GD) were cultivated at the air-liquid interface in Eagle's Minimal Essential Medium (MEM) or MEM with 50% rat serum for 14 days, as SF and SS conditions, respectively. The methylation of repetitive DNA sequences (SINE rat ID elements) was assessed by pyrosequencing. Development was evaluated by light microscopy and extracellular matrix glycosaminoglycans staining by Safranin O. Upon isolation, weak Safranin O staining was present only in more developed GD14 front-LBs. Chondrogenesis proceeded well in all cultures towards day 14, except in the SF-cultivated GD13 hind-LBs, where Safranin O staining was almost absent on day 3. That was associated with a higher percentage of DNA methylation than in SF-cultivated GD13 front-LBs on day three. In SF-cultivated front-LBs, a significant methylation increase between the 3rd and 14th day was detected. In SS-cultivated GD13 front-LBs, methylation increased significantly on day three and then decreased. In older GD14 SS-cultivated LBs, there was no increase of DNA methylation, but they were significantly hypomethylated relative to the SS-cultivated GD13 at days 3 and 14. We confirmed that the global DNA methylation increase is associated with less developed limb organ primordia that strive towards differentiation in vitro, which is of importance for regenerative medicine strategies.
E-selectin, ICAM-1 (intercellular adhesion molecule-1), and VCAM-1 (vascular cell adhesion molecule-1) play a role in atopic dermatitis (AD). This study aimed to evaluate their expression in skin biopsy specimens of patients diagnosed with AD using an optimized computer program. A descriptive analysis and comparison of digitally measured surface area and cell number were performed. The number of E-selectin-positive cells did not vary between the groups. In patients with AD, decreases of 1.2-fold for ICAM-1- and 1.3-fold for VCAM-1- positive cells were observed. The E-selectin-positive epidermal surface area increased (p < 0.001), while ICAM1 and VCAM1 decreased 2.5-fold and 2-fold, respectively, compared to controls. In the AD-affected skin, the E-selectin-positive endothelial area was 3.5-fold larger (p < 0.001), and the ICAM1-positive area was almost 4-fold larger (p < 0.001). E-selectin and ICAM-1 were expressed in the control dermis moderately and weakly, respectively. A strong E-selectin signal was detected in the AD-affected skin macrophages and a strong ICAM-1 signal in the dermal vessel endothelium. In the endothelial cells of AD-affected skin, no VCAM-1 signal could be found. E-selectin, ICAM-1, and VCAM-1 expression show significant disease-specific changes between AD-affected and control skin. The combination of digital analysis and a pathologist’s evaluation may present a valuable follow-up of AD activity parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.