Copper, a transition metal with essential biological functions, exerts neurotoxic effects when present in excess. The aim of the present study was to better elucidate cellular and molecular mechanisms of CuSO4 toxicity in differentiated P19 neurons. Exposure to 0.5 mM CuSO4 for 24 h provoked moderate decrease in viability, accompanied with barely increased generation of reactive oxygen species (ROS) and caspase-3/7 activity. Glutathione (GSH) and ATP contents were depleted, lactate dehydrogenase inactivated, and glyceraldehyde-3-phosphate dehydrogenase overexpressed. In severely damaged neurons exposed to only two times higher concentration, classical caspase-dependent apoptosis was triggered as evidenced by marked caspase-3/7 activation and chromatin condensation. Multifold increase in ROS, together with very pronounced ATP and GSH loss, strongly suggests impairment of redox homeostasis. At higher copper concentration protease calpains were also activated, and neuronal injury was prevented in the presence of calpain inhibitor leupeptin through the mechanism that affects caspase activation. MK-801 and nifedipine, inhibitors of calcium entry, and H-89 and UO126, inhibitors of PKA and ERK signaling respectively, exacerbated neuronal death only in severely damaged neurons, while ROS-scavenger quercetin and calcium chelator BAPTA attenuated toxicity only at lower concentration. In a dose-dependent manner copper also provoked transcriptional changes of genes involved in intracellular signaling and induction of apoptosis (p53, c-fos, Bcl-2 and Bax). The obtained results emphasize differences in triggered neuronal-death processes in a very narrow range of concentrations and give further insight into the molecular mechanisms of copper toxicity with the potential to improve current therapeutic approaches in curing copper-related neurodegenerative diseases.
Copper, a transition metal with essential cellular functions, exerts neurotoxic effects when present in excess by promoting production of reactive oxygen species (ROS). The aim of the present study was to investigate potential benefits of flavonoid quercetin against copper-induced toxicity. Results obtained with MTT assay indicate that the effects of quercetin are determined by the severity of the toxic insult. In moderately injured P19 neuronal cells, concomitant treatment with 150 μM quercetin improved viability by preventing ROS formation, caspase-3 activation, and chromatin condensation. Western blot analysis revealed that quercetin reduced copper-induced increase in p53 upregulated modulator of apoptosis (PUMA) expression and promoted upregulation of nucleoside diphosphate kinase NME1. Levels of p53 and Bax proteins were not affected by both copper and quercetin. UO126 and wortmannin, inhibitors of ERK1/2 and PI3K/Akt signalling pathways, respectively, prevented neuroprotective effects of quercetin. In severely injured neurons, 30 μM quercetin exerted strong prooxidative action and exacerbated cytotoxic effects of copper, whereas 150 μM quercetin failed to affect neuronal survival. These results demonstrate the dual nature of quercetin action in copper-related neurodegeneration. Hence, they are relevant in the context of considering quercetin as a possible therapeutic for neuroprotection and imply that detailed pharmacological and toxicological studies must be carried out for natural compounds capable of acting both as antioxidants and prooxidants.
Elevated amounts of copper are considered to be contributing factor in the progression of neurodegenerative diseases as they promote oxidative stress conditions. The aim of our study was to examine the effects of ethanolic extract of propolis (EEP) against copper-induced neuronal damage. In cultured P19 neuronal cells, EEP exacerbated copper-provoked neuronal cell death by increasing the generation of reactive oxygen species (ROS) and through the activation of caspase-3/7 activity. EEP augmented copper-induced up-regulation of p53 and Bax mRNA expressions. Neurotoxic effects of EEP were accompanied by a strong induction of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression and decrease in the expression of c-fos mRNA. SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK) prevented detrimental effects of EEP, whereas SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), exacerbated EEP-induced neuronal cell death. Quercetin, a polyphenolic nutraceutical, which is usually present in propolis, was also able to exacerbate copper-induced neuronal death. Our data indicates a pro-oxidative and apoptotic mode of EEP action in the presence of excess copper, wherein ROS/p53/p38 interactions play an important role in death cascades. Our study also pointed out that detailed pharmacological and toxicological studies must be carried out for propolis and other dietary supplements in order to fully recognize the potential adverse effects in specific conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.