18S-5.8S-26S rDNA family comprises tandemly arranged, repeating units separated by an intergenic spacer (IGS) that contains transcription initiation/termination signals and usually repeating elements. In this study, we performed for the first time thorough sequence analysis of rDNA IGS region in two dominant European oaks, Quercus petraea and Q. robur, in order to investigate (1) if IGS sequence composition allows discrimination between these two species, and (2) if there is an rDNA length heterogeneity arising from IGS sequence. Two spacer length variants (slvs), 2 and 4 kb in length, were found in the genomes of both species. Inter-comparison of both slvs revealed no species-specificity in sequence or structural organization. Both slvs could be divided into four subregions; (1) the subrepeat region containing three repeated elements, (2) the AT-rich region containing matrix attachment sites and putative origin of replication, (3) the promoter region containing putative transcription initiation site and (4) the 5'ETS region. In the 4-kb slvs all four subregions are extended, and the subrepeat, AT-rich and promoter regions are duplicated. This is unique compared to other known IGS sequences where the variation in number of subrepeats is responsible for slvs creation. We also propose a possible evolutionary scenario to explain the formation of the subrepeat region in oak IGS. Results obtained in this work add to the previous picture of low-genetic differentiation of the two oaks and provide important data for further analyses of the function of IGS in control of rRNA gene expression.
Fluorochrome banding (chromomycin, Hoechst, and DAPI) and fluorescence in situ hybridization (FISH) are excellent molecular cytogenetic tools providing various possibilities in the study of chromosomal evolution and genome organization. The constitutive heterochromatin and rRNA genes are the most widely used FISH markers. The rDNA is organized into two distinct gene families (18S-5.8S-26S and 5S) whose number and location vary within the complex of closely related species. Therefore, they are widely used as chromosomal landmarks to provide valuable evidence concerning genome evolution at chromosomal levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.