Four-stranded nucleic acid structures called G-quadruplexes have been associated with important cellular processes, which should require G-quadruplex-protein interaction. However, the structural basis for specific G-quadruplex recognition by proteins has not been understood. The DEAH (Asp-Glu-Ala-His) box RNA helicase associated with AU-rich element (RHAU) (also named DHX36 or G4R1) specifically binds to and resolves parallel-stranded G-quadruplexes. Here we identified an 18-amino acid G-quadruplex-binding domain of RHAU and determined the structure of this peptide bound to a parallel DNA G-quadruplex. Our structure explains how RHAU specifically recognizes parallel G-quadruplexes. The peptide covers a terminal guanine base tetrad (G-tetrad), and clamps the G-quadruplex using three-anchor-point electrostatic interactions between three positively charged amino acids and negatively charged phosphate groups. This binding mode is strikingly similar to that of most ligands selected for specific G-quadruplex targeting. Binding to an exposed G-tetrad represents a simple and efficient way to specifically target G-quadruplex structures.G-quadruplex | RHAU helicase | DHX36 | DEAH-box family | NMR
Size‐constrained gold nanoparticles are successfully synthesized within the cavity of native horse spleen ferritin by using a two‐step process relying on the initial formation of nanoclusters. The particles co‐elute with the nanocage ferritin by chromatography, indicating that the particles are associated with intact protein cages. Further characterization reveals that the growth of the monodisperse particles is limited by the protein cage.
Protein cages have been the focus of studies across multiple scientific disciplines. They have been used to deliver drugs, as templates for nanostructured materials, as substrates in the development of bio-orthogonal chemistry, and to restrict diffusion to study spatially confined reactions. Although their monomers fold into four-helix bundle structures, two cage proteins, DPS and BFR, self-assemble to form a 12-mer with tetrahedral symmetry and an octahedrally symmetric 24-mer, respectively. These monomers share strong similarities of both sequence and tertiary structure. However, they differ in the presence of a short additional helix. In BFR, the fifth helix is at the C-terminus and is positioned along the 4-fold symmetry axis, whereas with DPS, an extra helix helps to define the 2-fold axis in the cage and is located between the second and third helices in the monomer bundle. In an attempt to investigate if these short helices govern protein assembly, mutants were designed and produced that delete and swap these minidomains. All mutants form highly helical structures that unfold cooperatively as evidenced by thermal melting followed by circular dichroism. Dynamic light scattering, size exclusion chromatography, and sedimentation equilibrium experiments demonstrated that although many of the BFR mutants do not self-assemble and form lower-order complexes, many DPS mutants could form cages despite their unnatural design. Taken together, our data indicate that the BC helix is less important than the E helix for overall cage self-assembly, suggesting that dimerization may not play a role in nanostructure formation that is as key as previously assumed. Additionally, we found that fusing the minidomain from BFR onto DPS results in a mutant that assembles into a homogeneous population of a novel protein oligomer. This assembled cage while still formed from 12 subunits is larger in overall shape than that of the native protein.
G-quadruplexes are four-stranded structures built from stacked G-tetrads (G·G·G·G), which are planar cyclical assemblies of four guanine bases interacting through Hoogsteen hydrogen bonds. A G-quadruplex containing a single guanine analog substitution, such as 8-oxoguanine (O) or xanthine (X), would suffer from a loss of a Hoogsteen hydrogen bond within a G-tetrad and/or potential steric hindrance. We show that a proper arrangement of O and X bases can reestablish the hydrogen-bond pattern within a G·G·X·O tetrad. Rational incorporation of G·G·X·O tetrads in a (3+1) G-quadruplex demonstrated a similar folding topology and thermal stability to that of the unmodified G-quadruplex. pH titration conducted on X·O-modified G-quadruplexes indicated a protonation-deprotonation equilibrium of X with a pKa ∼6.7. The solution structure of a G-quadruplex containing a G·G·X·O tetrad was determined, displaying the same folding topology in both the protonated and deprotonated states. A G-quadruplex containing a deprotonated X·O pair was shown to exhibit a more electronegative groove compared to that of the unmodified one. These differences are likely to manifest in the electronic properties of G-quadruplexes and may have important implications for drug targeting and DNA-protein interactions.
G-quadruplexes are four-stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G-tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8-oxoguanine (O), within a single G-tetrad of a G-quadruplex was recently shown to lead to the formation of a stable G⋅G⋅X⋅O tetrad. Herein, a judicious introduction of X and O into a human telomeric G-quadruplex-forming sequence is shown to reverse the hydrogen-bond polarity of the modified G-tetrad while preserving the original folding topology. The control exerted over G-tetrad polarity by joint X⋅O modification will be valuable for the design and programming of G-quadruplex structures and their properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.