Temperature pervasively affects all cellular processes. In response to a rapid increase in temperature, all cells undergo a heat shock response, an ancient and highly conserved program of stress-inducible gene expression, to reestablish cellular homeostasis. In isolated cells, the heat shock response is initiated by the presence of misfolded proteins and therefore thought to be cellautonomous. In contrast, we show that within the metazoan Caenorhabditis elegans, the heat shock response of somatic cells is not cell-autonomous but rather depends on the thermosensory neuron, AFD, which senses ambient temperature and regulates temperature-dependent behavior. We propose a model whereby this loss of cell autonomy serves to integrate behavioral, metabolic, and stress-related responses to establish an organismal response to environmental change.The heat shock response counteracts the detrimental effects of protein misfolding and aggregation that result from biochemical and environmental stresses, including increases in temperature (1, 2). This response, orchestrated by the ubiquitously expressed heat shock factor-1 (HSF-1), involves the rapid transcription of a specific set of genes encoding the cytoprotective heat shock proteins (HSPs) (1, 2). The stress-induced appearance of nonnative proteins imbalances cellular homeostasis, and the resulting shift in chaperone requirements is thought to trigger the heat shock response (1, 2). Because all these events occur at the cellular level, the heat shock response is thought to be cell-autonomous. Indeed, isolated cells in tissue culture, unicellular organisms (1, 2), and individual cells within a multicellular organism (3) can all produce a heat shock response when exposed directly to heat.Although the heat shock response is essential for the survival of cells exposed to stress, the accumulation of large amounts of HSPs can be detrimental for cell growth and division (2, 4). Therefore, although cellular autonomy in initiating this response may be beneficial for unicellular organisms and isolated cells, the uncoordinated triggering of the heat shock response in individual cells within a multicellular organism could interfere with the complex interactions between differentiated cells and tissues.In Caenorhabditis elegans, a pair of thermosensory neurons, the AFDs, detect and respond to ambient temperature (5, 6). The AFDs, and their postsynaptic partner cells, the AIYs, regulate the temperature-dependent behavior of the organism and are required for finding * To whom correspondence should be addressed. r-morimoto@northwestern.edu. the optimal temperature for growth and reproduction (6). We tested whether this thermosensory neuronal circuitry also regulates the heat shock response of somatic cells. For this, we exposed wild-type C. elegans or animals carrying loss-of-function mutations affecting the AFD or AIY neurons (Fig. 1A) to a transient increase in temperature and assayed their heat shock response. The mutations chosen {gcy-23, gcy-8 (7), tax-4, ttx-1, and ttx-3 [fo...
The assembly and maintenance of an extended intermediate filament (IF) network in fibroblasts requires microtubule (MT) integrity. Using a green fluorescent protein–vimentin construct, and spreading BHK-21 cells as a model system to study IF–MT interactions, we have discovered a novel mechanism involved in the assembly of the vimentin IF cytoskeleton. This entails the rapid, discontinuous, and MT-dependent movement of IF precursors towards the peripheral regions of the cytoplasm where they appear to assemble into short fibrils. These precursors, or vimentin dots, move at speeds averaging 0.55 ± 0.24 μm/s. The vimentin dots colocalize with MT and their motility is inhibited after treatment with nocodazole.Our studies further implicate a conventional kinesin in the movement of the vimentin dots. The dots colocalize with conventional kinesin as shown by indirect immunofluorescence, and IF preparations from spreading cells are enriched in kinesin. Furthermore, microinjection of kinesin antibodies into spreading cells prevents the assembly of an extended IF network. These studies provide insights into the interactions between the IF and MT systems. They also suggest a role for conventional kinesin in the distribution of non-membranous protein cargo, and the local regulation of IF assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.