The elastic properties of boron nitride nanotubes have been calculated using the
Tersoff–Brenner potential which is a bond order potential used successfully previously for
carbon nanotubes. In the present calculation, the same form of potential is used with
adjusted parameters for hexagonal boron nitride. The Young’s modulus and shear modulus
for single-walled armchair and zigzag tubes of different radii have been calculated. The
effects of tube diameter are investigated. The computational results show the variation of
Young’s modulus and shear modulus of boron nitride nanotubes with nanotube diameter.
The results have been compared with available data, experimental as well as calculated.
Silver nanowires have been synthesized by the polyol process with ethylene glycol as a reducing agent and polyvinylpyrrolidone as a stabilizer, using microwave technique. Crystallographic, topographic, and morphological characterizations of the synthesized nanostructures have been studied via powder X-ray diffraction and electron microscopy (Field Emission Scanning Electron Microscope) and Transmission Electron Microscope, respectively. Fourier Transform-Infrared Spectroscopy, UV-Vis absorption spectroscopy, Raman spectroscopy, Thermogravometric analysis, and X-ray photoelectron spectroscopy have been carried out for the detailed quantitative and qualitative analyses. Optical characterizations of the synthesized silver nanowires have been concluded via energy-resolved and time-resolved photoluminescence and energy dispersive X-ray spectroscopic studies, respectively. Spectroscopic studies confirm the formation of good-quality silver nanowires. The X-ray photoelectron spectroscopy investigation and Raman spectra further show that the PVP molecules are adsorbed on the surface of Ag nanowires through Ag: O coordination. A possible growth mechanism of the Ag nanowires has been proposed. It is implied that the PVP molecules are used as both a protecting agent and a structure-directing agent for the growth of Ag nanowires. These studies confirm the formation of high-quality silver nanowires. Topographic and morphological studies confirm that average grain size of silver nanowires is in the nanometer range.
Graphene Nanoplatelets were fabricated from expandable graphite by rapid microwave exfoliation. Expandable graphite was irradiated in microwave in full power for 3 min, then was soaked in mixed nitric acid and sulphuric acid at volume ratio of 1:1 for 24 h and re-irradiated, thus graphene nanoplatelets (GNPs) were obtained. Extensive characterization techniques showed that GNPs synthesized using this technique are highly pure with traces of oxide groups and without serious unrecoverable oxidation damage. GNPs synthesized by microwave technique have high crystallinity, with variable size and little layer thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.