Nanocomposites were synthesised by dispersing two different types of alumina nanoparticles in epoxy matrix by ultrasonication. Alumina nanoparticles of two shapes, rod and spherical were selected to investigate the effect of particle morphology on viscoelastic and flexural properties of nanocomposites. Specific surface area of both the selected nanoparticles was kept in the similar range. Good dispersion of nanoparticles was observed through transmission electron microscopy. The addition of nanoparticles in epoxy had significant enhancement in the viscoelastic properties and moderate improvement in flexural properties of composites. Composites having alumina nanorods showed higher improvement both in storage modulus as well as in flexural properties in comparison to composites having spherical alumina nanoparticles. Efficacy of Mori-Tanaka method was explored in modelling storage modulus of nanocomposites. Assorted size of alumina nanorods based on particle size distribution was used to model composites with nanorods to see the effect of size assortment on storage modulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.