Germplasm is a valuable natural resource that provides knowledge about the genetic composition of a species and is crucial for conserving plant diversity. Germplasm protection strategies not only involve rescuing plant species threatened with extinction, but also help preserve all essential plants, on which rests the survival of all organisms. The successful use of genetic resources necessitates their diligent collection, storage, analysis, documentation, and exchange. Slow growth cultures, cryopreservation, pollen and DNA banks, botanical gardens, genetic reserves, and farmers’ fields are a few germplasm conservation techniques being employed. However, the adoption of in-vitro techniques with any chance of genetic instability could lead to the destruction of the entire substance, but the improved understanding of basic regeneration biology would, in turn, undoubtedly increase the capacity to regenerate new plants, thus expanding selection possibilities. Germplasm conservation seeks to conserve endangered and vulnerable plant species worldwide for future proliferation and development; it is also the bedrock of agricultural production.
A meta-QTL analysis was conducted in Indian mustard to identify robust and stable meta-QTLs (MQTLs) by utilizing 1504 available QTLs, which included 891 QTLs for yield-related traits and 613 QTLs for quality traits. For yield-related traits, a total of 57 MQTLs (YRTs_MQTLs) were uncovered from the clustering of 560 projected QTLs, which had a 4.18-fold smaller confidence interval (CI) than that of the initial QTLs, whereas, for quality traits, as many as 51 MQTLs (Quality_MQTLs) were derived from 324 projected QTLs, which had a 2.65-fold smaller CI than that of the initial QTLs. Sixteen YRTs_MQTLs were observed to share chromosomal positions with 16 Quality_MQTLs. Moreover, four most promising YRTs_MQTLs and eight Quality-MQTLs were also selected and recommended for use in breeding programs. Four of these selected MQTLs were also validated with significant SNPs that were identified in previously published genome-wide association studies. Further, in silico functional analysis of some promising MQTLs allowed the detection of as many as 1435 genes, which also involved 15 high-confidence candidate genes (CGs) for yield-related traits and 46 high-confidence CGs for quality traits. After validation, the identified CGs can also be exploited to model the plant architecture and to improve quality traits through marker-assisted breeding, genetic engineering, and genome editing approaches.
Sulphur oxides are formed during high temperature combustion processes from the oxidation of sulphur in the air. The principal source of sulphur oxides is sulphur oxide (SO) and sulphur dioxide (SO2), collectively known as SOx. SO and SO2 concentrations are therefore the highest in industrial area. Other important sources are power stations, heating plants, and industrial processes. Long-term exposure to sulphur dioxide may affect lung function, and that exposure to sulphur dioxide enhances the response to allergens in sensitized individuals. The feasibility of using waste materials as adsorbent for air pollutant SOx was evaluated in the present study. The experiments were carried out in laboratory on certain waste materials like Neem leaf powder, orange peel powder, custard apple leaf powder, Horse gram seed powder, Ragi seed powder, mango bark dust, mixed algae, and Neem bark dust. The experimental investigations were carried out by traditional adsorption studies, and they showed that all substances had certain capacity to adsorb SOx from aqueous solution of SOx. The order of adsorption by different low cost materials is Mango bark dust > Orange peel powder >Custard apple leaf powder> Neem leaf powder> Horse gram seed powder> Ragi seed powder> Neem bark powder, mixed algae by 98%>95%>88%>82%>80%>78%>77%>74%, respectively. At lower concentration the adsorption is more compared to higher concentration. It is found that the adsorption increases with an increase in surface area.
SUMMARY :Plant metabolites play a special role in the maintenance of good health. India is rich in natural wealth and there is an ample scope to explore phytochemicals from the plant kingdom. Trees are also one of the important sources of secondary metabolites. Tectona grandis (Teak) one of the bestknown tropical timbers, is native to the Indian subcontinent which extends to areas like Myanmar, Thailand and Laos. The whole plant is also medicinally important as it contains enormous number of phytoconstituents which helps in curing the ailments. The GC -MS analysis of withered brown leaves of Tectona grandis showed 26 compounds of which squalene, dibutyl phthalate, geranyl-p-cymene and caryophyllene oxide showed the greatest contribution to the percentage of the total area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.