Solar photovoltaic systems installed in outdoor environments are susceptible to faults and partial shading, which leads to reduction in the production of maximum power. The conventional protection units are unable to detect the types of faults due to non-linear characteristics and they result in fire hazards and reduced system efficiency. In this paper, a fault detection method based on Multiclass Support Vector Machine (MSVM) is proposed to detect different faults like line-ground (L-G), line-line (L-L), and partial shading. The array voltage, array current and irradiance are used to detect the line-line and partial shading under different irradiation conditions. The novel Opposition-based Border Collie Optimization (OBCO) algorithm is used to improve the accuracy of fault classification by optimizing the hyper-parameters of MSVM. A 1.6 kW, 4 × 4 solar photovoltaic array is developed, and the fault conditions are experimentally tested to validate the proposed algorithm. The experimental results show that the proposed MSVM-OBCO fault detection algorithm has higher accuracy compared to that of the existing classification algorithms such as k-nearest neighbor, Naïve Bayes, Decision Tree and Random Forest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.