Zinc Oxide Nanoparticles (ZnONPs) are one of the most widely used metal oxide nanoparticles in biological applications because of their outstanding biocompatibility, affordability, and low toxicity. In biomedicine, ZnONPs have shown promise, particularly in the disciplines of anticancer and antibacterial fields. In comparison to other standard synthesis methods, the environmentally-friendly synthesis of metallic nanoparticles utilizing various plant extracts is a good option. The current research focuses on the synthesis of zinc oxide nanoparticles (ZnONPs) from R. sativus leaf extract under various physical conditions (Precipitation method). Analytical methods were used to confirm and characterize the produced ZnONPs. The spherical nature of the produced nanoparticles was established by SEM analysis. The generation of very pure ZnONPs was confirmed by EDS data. The crystalline nature of the produced nanoparticles, with a particle size of 66.47 nm, was confirmed by XRD. The XRD graphs’ presence of the (100), (002), and (101) planes strongly suggest the production of wurtzite ZnO. The visual and infrared area exhibits transmissions of 84 percent in the pH 10 nanoparticles. The band gap of the nanoparticles increases from 3.34 to 3.38 eV when the pH increases. These nanoparticles were effective against both Gram-positive and Gram-negative bacteria. The effect of several process parameters such as pH and temperature were investigated, and the best conditions were discovered to be pH 12 and 80 °C, respectively. The effect of ZnONPs was tested with human breast cancer cells (MCF-7), and they showed significant cytotoxic results. Collectively, our data suggest that ZnONPs of R. sativus leaf extract inhibit breast cancer cell lines. The ZnONPs are, therefore, a prospective source of chemopreventive drugs that merit additional exploration in order to uncover lead compounds with cancer chemotherapeutic potential.
Integration in teaching and learning approach is required due to increasing use of emergent technologies in research and industry. Integration learning helps students to visualize exact picture of industry. In case of Bachelor of Engineering in Biotechnology, integration of subjects and labs increases their knowledge and get the whole process of bio production. The present work synthesizes the outcomes of integrated learning in Downstream Process Technology lab (DSPT lab) and Bioprocess Engineering lab. Openended experiment was given to seventh semester students and anticipated to use the knowledge of bioprocess engineering lab and DSPT lab to complete the task. Openended experiment illustrates the flow of processes in Bioprocess industry which involves production of proteins and metabolites. As a result students could relate and use the knowledge learnt in each other lab to complete the task. Performance of the students was assessed as per Accreditation Board for Engineering and Technology's (ABET) 3b & 3g criteria. 3b-Design and conduct experiment 3g-Communicate effectively
Xylanases are enzymes that convert xylan into xylose, xylobiose, and xylotriose. The present study deals with the production and optimization of xylanase through Solid-State Fermentation (SSF) using different agricultural wastes by Aspergillus spp. The Plackett Burman (PB) design was used to screen significant media components affecting the xylanase production. The carbon sources screened were wheat bran, rice bran, sugarcane bagasse, corn cob, and orange peel. The nitrogen sources screened were yeast extract, peptone, (NH4)2SO4, Na2NO3, and urea. Also, nine different salts such as KCl, MgSO4, Na2HPO4, CaCl2, FeSO4, ZnSO4, Na2CO3, KH2PO4, and NaH2PO4 which act as trace elements were screened. The results showed that wheat bran, yeast extract, Na2NO3 and KCl are the significant factors that affect xylanase production. A 33 Full Factorial Design (FFD) was performed to optimize the significant media components (wheat bran, KCl, yeast extract) obtained from PB design using Response Surface Methodology (RSM). Statistical analysis of results showed that wheat bran, KCl, yeast extract, and interaction between wheat bran and yeast extract were found to be significant. The optimum concentration of wheat bran, KCl, yeast extract was 8 g/L, 0.1 g/L and 3 g/L. The Partial purification of xylanase was carried out using ammonium salt precipitation and dialysis. Gel filtration chromatography was performed to optimize the elution time, which was found to be 6 minutes. Application of xylanase in orange juice clarification was studied at 40 °C, 50 °C, and 60 °C. The optimum temperature obtained was 60 ºC.
Microbial lipases are the biocatalyst of choice for the present and future because of their characteristics, including their ability to remain active as an enzyme throughout a broad pH, temperature, and substrate range. The goal of the current investigation was to find novel sources of substrates and isolates from soil contaminated by oil for the synthesis of lipase. On tributyrin media, 10 lipolytic bacterial strains that were isolated from oil-contaminated soil were grown. Using the zone of clearance, it was possible to identify the isolates with the highest activity. Following phylogenetic tree analysis, molecular characterization of the 16S rRNA sequence of the bacterial isolates revealed that it was Bacillus halotolerans (VSH 09). The enzyme was purified to near homogeneity. The enzyme activity was found to be optimum at a pH of 7.0 and a temperature of 35 °C. While Ni2+ and Cu2+ had no effect, the presence of Mg2+ and Ca2+ exhibited the highest levels of enzyme activity. At 1%, tributyrin as a substrate exhibited its highest level of activity. The molecular weight, as determined by SDS-PAGE, was found to be 38 kDa. The kinetics of the enzyme were found to be 41.66 and 9.37 mg/mL for Vmax and Km, respectively. The high yield of lipase produced by this method suggests that it holds potential for production on a large scale and could be used for various biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.