To improve the genetics of both growth and egg production, which are limitations in purebred native chickens, new genetic lines can be developed using an appropriate genetic approach. The data used in this study included 2713 body weight (BW0, BW4, BW6, BW8, and BW10), breast circumference (BrC6), chicken age at first egg (AFE), and egg production (240EP, 270EP, 300EP, and 365EP) records covering the period 2015 to 2020. A multi-trait animal model with the average information-restricted maximum likelihood (AI-REML) and a selection index was used to estimate the variance components, genetic parameters, and breeding values. The results showed that males had significantly higher weights than females (p < 0.05) from 4 to 10 weeks of age and that this difference increased over the generations. The differences between BW0 and BrC6 by sex and generation were not significant (p > 0.05). The estimated heritability of body weight ranged from 0.642 (BW0) to 0.280 (BW10); meanwhile, the estimated heritability of BrC6 was moderate (0.284). For egg production traits, the estimated heritability of 240EP, 270EP, 300EP, and 365EP was 0.427, 0.403, 0.404, and 0.426, respectively, while the estimated heritability of AFE was 0.269. The genetic and phenotypic correlations among the growth traits (BW0 to BW10) were low to highly positive. The genetic and phenotypic correlations between growth (BW0 to BW10) and BrC6 traits were positive, and the genetic correlations between BW6 (0.80), BW8 (0.84), BW10 (0.93), and BrC6 were strongly positive. Genetic correlations among the egg production traits (240EP, 270EP, 300EP, and 365EP) were low to highly positive and ranged from 0.04 to 0.86. The genetic correlations between AFE and all egg production traits were low to moderately negative and ranged from −0.14 to −0.29. The positive genetic correlations between body weight (BW6, BW8, and BW10) and egg production traits were found only in 240EP. The average genetic progress of body weight traits ranged from −0.38 to 30.12 g per generation for BW0 to BW10 (p < 0.05); the genetic progress was 0.28 cm per generation for BrC6 (p > 0.05). The average genetic progress of cumulative egg production traits ranged from 4.25 to 12.42 eggs per generation for 240EP to 365EP (p < 0.05), while the average genetic progress of AFE was −7.12 days per generation (p < 0.05). In conclusion, our study suggests that the body weight at six weeks of age (BW6), breast circumference at six weeks of age (BrC6), cumulative egg production at 240 days of age (240EP), and age at first egg (AFE) are the traits that should be used as selection criteria, as they have a positive effect on the development of growth and egg production.
To improve the body weight and growth performance traits of crossbred Thai indigenous chickens, phenotypic performance and genetic values were estimated. Crossbred Thai indigenous chickens, designated KKU1 and KKU2, were compared. The data included 1375 records of body weight (BW0, BW2, BW4, and BW16), breast circumference at 6 weeks of age (BrC6), and average daily gain (ADG0–2, ADG0–4, and ADG0–6). A multi-trait animal model with the average information-restricted maximum likelihood (AI-REML) was used to estimate the genetic parameters and breeding values. The results showed that the body weight and breast circumference traits (BW2, BW4, BW6, and BrC6) for the mixed sex KKU1 chickens were higher than for the KKU2 chickens (p < 0.05). For the growth performance traits, the KKU1 chickens had higher average daily gain and feed intake and a lower feed conversion ratio than the KKU2 chickens (p < 0.05). The survival rates were not different except at up to 6 weeks of age, when that of the KKU1 chickens was slightly lower. The specific combining ability, heritability, genetic and phenotypic correlations, and estimated breeding values showed that the KKU1 chickens had better genetics than the KKU2 chickens. In conclusion, KKU1 chickens are suitable for development as crossbred Thai indigenous chickens for enhanced growth performance and for commercial use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.