MRI technique is widely used in the field of medicine because of its high spatial resolution, non-invasive characteristics, and soft tissue contrast. In this review article, a systematic study has been conducted to analyze the performance and issues of various techniques for brain tumor segmentation. Latest research on BTS in MRI with the higher resolution is utilized for the systematic review. The high-resolution images increase execution time of the classification, and accuracy is the other problem in BTS. Still, there is some research lacking in accuracy on the brain segmentation. Few researchers carried out the classification of different kinds of tissues in the brain images and also on the prediction on growth of tumor. Each method has specific technique to improve the performance of the BTS, and these methods are compared with one another in terms of result. Research comparison helps to understand the proposed method with their achieved results. Clustering algorithms such as K-means and FCM are generally used for segmentation, and GA, ANN, ANFIS, FCNN, SVM are commonly used as classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.