Assessment of tumor infiltrating lymphocytes (TILs) in histopathological specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible and reliable immuno-oncology biomarkers is clear. In Part 1 of this review we briefly discuss the host immune response to tumors and different approaches to TIL assessment. We propose a standardized methodology to assess TILs in solid tumors on H&E sections, in both primary and metastatic settings, based on the International Immuno-Oncology Biomarker Working Group guidelines for TIL assessment in invasive breast carcinoma. A review of the literature regarding the value of TIL assessment in different solid tumor types follows in Part 2. The method we propose is reproducible, affordable, easily applied, and has demonstrated prognostic and predictive significance in invasive breast carcinoma. This standardized methodology may be used as a reference against which other methods are compared, and should be evaluated for clinical validity and utility. Standardization of TIL assessment will help to improve consistency and reproducibility in this field, enrich both the quality and quantity of comparable evidence, and help to thoroughly evaluate the utility of TILs assessment in this era of immunotherapy.
Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this review, we discuss the available evidence for the prognostic and predictive value of TILs in common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary system, gynecological system, and head and neck, as well as primary brain tumors, mesothelioma and melanoma. The particularities and different emphases in TIL assessment in different tumor types are discussed. The standardized methodology we propose can be adapted to different tumor types and may be used as a standard against which other approaches can be compared. Standardization of TIL assessment will help clinicians, researchers and pathologists to conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.
Programmed death 1 ligand 1 (PD-L1) is an immune regulatory molecule that limits antitumor immune activity. Targeting of PD-L1 and other immune checkpoint proteins has shown therapeutic activity in various tumor types. The expression of PD-L1 and its correlation with response to neoadjuvant chemotherapy in breast cancer has not been studied extensively. Our goal was to assess PD-L1 expression in a cohort of breast cancer patients treated with neoadjuvant chemotherapy. Pre-treatment biopsies from 105 breast cancer patients from Yale New Haven Hospital that subsequently received neoadjuvant chemotherapy were assessed for PD-L1 protein expression by automated quantitative analysis (AQUA) with a rabbit monoclonal antibody (E1L3N) to the cytoplasmic domain of PD-L1. Additionally, tumor-infiltrating lymphocytes (TIL) were assessed on H&E slides.PD-L1 expression was observed in 30% of patients and it was positively associated with hormone-receptor negative and triple-negative status and high levels of TILs. Both TILs and PD-L1 measured in the epithelium or stroma predicted pathologic complete response (pCR) to neoadjuvant chemotherapy in univariate and multivariate analysis. However, since they are strongly associated, TILs and PD-L1 cannot both be included in a significant multivariate model.PD-L1 expression is prevalent in breast cancer, particularly hormone-receptor negative and triple-negative patients, indicating a subset of patients that may benefit from immune therapy. Furthermore, PD-L1 and TILs correlate with pCR and high PD-L1 predicts pCR in multivariate analysis.
Morphological evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer is gaining momentum as evidence strengthens the clinical relevance of this immunological biomarker. TILs in the post-neoadjuvant residual disease setting are acquiring increasing importance as a stratifying marker in clinical trials, considering the raising interest on immunotherapeutic strategies after neoadjuvant chemotherapy. TILs in ductal carcinoma in situ, with or without invasive carcinoma, represent an emerging area of clinical breast cancer research. The aim of this report is to update pathologists, clinicians and researchers on TIL assessment in both the post-neoadjuvant residual disease and the ductal carcinoma in situ settings. The International Immuno-Oncology Working Group proposes a method for assessing TILs in these settings, based on the previously published International Guidelines on TIL Assessment in Breast Cancer. In this regard, these recommendations represent a consensus guidance for pathologists, aimed to achieve the highest possible consistency among future studies.
Metastatic breast cancers are immunologically more inert than the corresponding primary tumors but some immune-oncology targets and macrophage and angiogenesis signatures show preserved expression and suggest therapeutic combinations for clinical testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.