We investigate the effect of eddy currents on ferromagnetic resonance (FMR) in ferromagnetnormal metal (FM/NM) bilayer structures. Eddy-current effects are usually neglected for NM layer thicknesses below the microwave (MW) skin depth ( 800 nm for Au at 10 GHz). However, we show that in much thinner NM layers (10-100 nm of Au or Cu) they induce a phase shift in the FMR excitation when the MW driving field has a component perpendicular to the sample plane. This results in a strong asymmetry of the measured absorption lines. In contrast to typical eddy-current effects, the asymmetry is larger for thinner NM layers and is tunable through changing the sample geometry and the NM layer thickness.
The collective dynamics in populations of magnetic spin torque oscillators (STO) is an intensely studied topic in modern magnetism. Here, we show that arrays of STO coupled via dipolar fields can be modeled using a variant of the Kuramoto model, a well-known mathematical model in non-linear dynamics. By investigating the collective dynamics in arrays of STO we find that the synchronization in such systems is a finite size effect and show that the critical coupling—for a complete synchronized state—scales with the number of oscillators. Using realistic values of the dipolar coupling strength between STO we show that this imposes an upper limit for the maximum number of oscillators that can be synchronized. Further, we show that the lack of long range order is associated with the formation of topological defects in the phase field similar to the two-dimensional XY model of ferromagnetism. Our results shed new light on the synchronization of STO, where controlling the mutual synchronization of several oscillators is considered crucial for applications.
We numerically demonstrate an ultrafast method to create $\textit{single}$
skyrmions in a $\textit{collinear}$ ferromagnetic sample by applying a
picosecond (effective) magnetic field pulse in the presence of
Dzyaloshinskii-Moriya interaction. For small samples the applied magnetic field
pulse could be either spatially uniform or nonuniform while for large samples a
nonuniform and localized field is more effective. We examine the phase diagram
of pulse width and amplitude for the nucleation. Our finding could ultimately
be used to design future skyrmion-based devices.Comment: 4.5 pages+Supplemental Materia
We have investigated the magnetodynamic properties of La0.7Sr0.3MnO3 (LSMO) films of thickness 10, 15 and 30 nm grown on (111)-oriented SrTiO3 (STO) substrates by pulsed laser deposition. Ferromagnetic resonance (FMR) experiments were performed in the temperature range 100-300 K, and the magnetodynamic damping parameter α was extracted as a function of both film thickness and temperature. We found that the damping is lowest for the intermediate film thickness of 15 nm with α ≈ 2 · 10 −3 , where α is relatively constant as a function of temperature well below the Curie temperature of the respective films.
We investigate how controlling induced eddy currents in thin film ferromagnet-normal metal (FM/NM) structures can be used to tailor the local microwave (MW) fields in ferromagnetic resonance (FMR) experiments. The MW fields produced by eddy currents will in general have a relative phase shift with respect to the applied MW field which depends on the sample geometry. The induced fields can thus partially compensate the applied MW field, effectively screening the FM in selected parts of the sample. The highly localized fields produced by eddy currents enable the excitation of spin wave modes with non-zero wave vectors (k = 0), in contrast to the uniform k = 0 mode normally excited in FMR experiments. We find that the orientation of the applied MW field is one of the key parameters controlling the eddy-current effects. The induced currents are maximized when the applied MW field is oriented perpendicular to the sample plane. Increasing the magnitude of the eddy currents results in a stronger induced MW field, enabling a more effective screening of the applied MW field as well as an enhanced excitation of spin wave modes. This investigation underlines that eddy currents can be used to control the magnitude and phase of the local MW fields in thin film structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.