To simultaneously optimize endurance, explosive, and technical capacities in 2 different disciplines, world-class NC athletes train approximately two-thirds of the XC skier's endurance training volume and perform one-half of the ski-jump-specific training compared with SJ. Still, the various laboratory capacities differed only 10-17% compared with SJ and XC skiers.
Nordic combined requires high technical skills and vertical impulse for the ski-jumping event and aerobic endurance, ski efficiency and finish-sprint abilities to succeed in the subsequent cross-country race. The main aim of this study was to investigate the development of training, technical, and physiological characteristics during the last four seasons preceding the Olympic Games in a Nordic Combined Champion [∼74 kg (63 kg lean-mass)]. During the first season of the 4-year cycle, the development of lower-body muscle-mass and vertical jump velocity was prioritized, after which the emphasis on developing the technical abilities were increased over the following three seasons. While maintaining his vertical velocity in countermovement jump at ∼3 m⋅s−1, despite an increase of 7 kg overall body-mass, the participant improved his vertical velocity in sport-specific ski jump imitation with 0.31 m⋅s−1 coincidentally with high technical focus, including use of systematic mental training to enhance skill acquisition, and an almost twofold increase of annual imitation jumps in the four-season cycle. Endurance training increased from 462 h⋅season−1 in season one to 635 h⋅season−1 in season three, which was mainly due to more low-intensity training. Thereafter, endurance training in the Olympic season was reduced by 12% and more focus was placed on quality of each session and sufficient recovery. The highest trueV˙O2peak (5.36 L⋅min−1 and 72.0 ml⋅kg−1⋅min−1) was measured in the third season and thereafter maintained, although competition results were further improved toward the Olympics. The amount of moderate- (31.9 ± 2.8 h⋅season−1, 43.0 ± 3.9 sessions⋅season−1) and high-intensity (28.3 ± 3.1 h⋅season−1, 52.3 ± 2.7 sessions⋅season−1) endurance training was stable throughout the four-season period, with >65% being performed as skiing or roller ski skating. Development of finish-sprint ability was an important strategy throughout the entire period, and both Olympic gold medals were won in a finish-sprint. Altogether, this study provides unique data from the four-season cycle of a two-time Olympic gold medal winner in Nordic Combined, where high amounts of strength/power and endurance training is successfully combined toward a peak in the Olympic season. This knowledge shows how the combination of long-term endurance and strength/power may be optimized, and generates new hypotheses to be tested in future research.
BackgroundNordic combined (NC) is an Olympic winter-sport performed as a ski jumping (SJ) event followed by a cross-country (XC) pursuit race employing the skating style.PurposeTo elucidate the associations between sport-specific laboratory capacities and SJ, XC skiing, and overall NC performance in a world-cup NC event.MethodsTwelve international world-cup NC athletes from 8 nations performed laboratory testing one day prior to participating in a world-cup NC event. Squat jumps and SJ imitations (IMIT) were performed on a three-dimensional force plate, whereas XC skiing-specific physiological characteristics were obtained from roller ski skating tests on a treadmill and an all-out double poling (DP) test. Finally, body composition was measured. Laboratory capacities were correlated against performance in SJ, 10-km XC skiing, and overall NC in the world-cup event. Multiple regression analysis was used to determine the best suited laboratory variables for predicting performance.ResultsVertical IMIT velocity together with body-mass provided the best prediction for SJ performance (r2 = 0.70, p<0.01), while body-mass-normalized and DP power provided the best prediction for XC performance (r2 = 0.68, p<0.05). Body-mass-normalized was the only significant correlate with overall NC performance (r2 = 0.43, p<0.05) in this competition.ConclusionOverall, the concurrent development of , upper-body power, and SJ-specific vertical jump capacity while minimizing body-mass within the BMI limit set by FIS should be considered in the seasonal training of NC athletes.
World-class NC athletes reduce the volume of low- and moderate-intensity endurance training toward the competition phase, followed by an increase in the relative contribution of power and ski-jump training. These data provide novel insight on how successful athletes execute their training and may facilitate more-precise coaching of future athletes in this sport. In addition, this information is of high relevance for the training organization of other sports that require optimization of 2 fundamentally different physical capacities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.