SUMMARYWe explore extinction rates using a spatially arranged set of subpopulations obeying Ricker dynamics. The population system is subjected to dispersal of individuals among the subpopulations as well as to local and global disturbances. We observe a tight positive correlation between global extinction rate and the level of synchrony in dynamics among the subpopulations. Global disturbances and to a lesser extent, migration, are capable of synchronizing the temporal dynamics of the subpopulations over a rather wide span of the population growth rate r. Local noise decreases synchrony, as does increasing distance among the subpopulations. Synchrony also levels off with increasing r : in the chaotic region, subpopulations almost invariably behave asynchronously. We conclude that it is asynchrony that reduces the probability of global extinctions, not chaos as such : chaos is a special case only. The relationship between global extinction rate, synchronous dynamics and population growth rate is robust to changes in dispersal rates and ranges.
Understanding the ultimate causes of population declines and extinction is vital in our quest to stop the currently rampant biodiversity loss. Comparison of ecological characteristics between threatened and nonthreatened species may reveal these ultimate causes. Here, we report an analysis of ecological characteristics of 23 threatened and 72 nonthreatened butterfly species. Our analysis reveals that threatened butterflies are characterized by narrow niche breadth, restricted resource distribution, poor dispersal ability, and short flight period. Based on the characteristics, we constructed an ecological extinction risk rank and predicted which of the currently nonthreatened species are at the highest risk of extinction. Our analysis reveals that two species currently classified as nonthreatened are, in fact, at high risk of extinction, and that the status of a further five species should be reconsidered.conservation biology ͉ threatened species ͉ biodiversity ͉ Lepidoptera ͉ World Conservation Union Red List
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.