[1] We examine the quality of atmospherically deposited ion and isotope signals in an ice core taken from a periodically melting ice field, Lomonosovfonna in central Spitsbergen, Svalbard. The aim is to determine the degree to which the signals are altered by periodic melting of the ice. We use three diagnostics: (1) the relation between peak values in the ice chemical and isotopic record and ice facies type, (2) the number of apparent annual cycles in these records compared with independently determined number of years represented in the ice core, and (3) a statistical comparison of the isotopic record in the ice core and the isotope records from coastal stations from the same region. We find that during warm summers, as much as 50% of the annual accumulation may melt and percolate into the firn; in a median year this decreases to $25%. As a consequence of percolation, the most mobile acids show up to 50% higher concentrations in bubble-poor ice facies compared with facies that are less affected by melt. Most of the other chemical species are less affected than the strong acids, and the stable water isotopes show little evidence of mobility. Annual or biannual cycles are detected in most parameters, and the water isotope record has a comparable statistical distribution to isotopic records from coastal stations. We conclude that ice cores from sites like Lomonosovfonna contain a useful environmental record, despite melt events and percolation and that most parameters preserve an annual, or in the worst cases, a biannual atmospheric signal.
Abstract.A distributed energy balance model is coupled to a multi-layer snow model in order to study the mass balance evolution and the impact of refreezing on the mass budget of Nordenskiöldbreen, Svalbard. The model is forced with output from the regional climate model RACMO and meteorological data from Svalbard Airport. Extensive calibration and initialisation are performed to increase the model accuracy. For the period 1989-2010, we find a mean net mass balance of −0.39 m w.e. a −1 . Refreezing contributes on average 0.27 m w.e. a −1 to the mass budget and is most pronounced in the accumulation zone. The simulated mass balance, radiative fluxes and subsurface profiles are validated against observations and are generally in good agreement. Climate sensitivity experiments reveal a non-linear, seasonally dependent response of the mass balance, refreezing and runoff to changes in temperature and precipitation. It is shown that including seasonality in climate change, with less pronounced summer warming, reduces the sensitivity of the mass balance and equilibrium line altitude (ELA) estimates in a future climate. The amount of refreezing is shown to be rather insensitive to changes in climate.
[1] We present a high-resolution record of water-soluble ion chemistry from a 121 m ice core spanning about 800 years. The core is well dated to 2/3 depth using cycle counting and reference horizons and a simple but close fitting model for the lower 1/3 of the core. This core suffers from modest seasonal melt, and so we present concentration data in decadal running means to minimize percolation effects. Sea-salt ions (Na, and K + ) account for more than 70% of all ions. In general, sea-salt ion concentrations are rather variable and have no clear association with climatic variations. Sulfate, with 74% being from non-sea-salt sources, has higher concentrations than seen on Vestfonna ice cap but lower than in Ny-Å lesund aerosols, suggesting central Spitsbergen receives more marine (westerly) air masses than Ny-Å lesund but more sulfate enriched (easterly) air masses than Nordaustlandet. Clear anthropogenic impacts are found for sulfate, nitrate, and ammonium (and probably excess chloride) after the mid twentieth century, with sulfate showing a significant rise by the end of the nineteenth century. Sulfate and methanesulfonate concentrations correlate well during the twentieth century, and it is clear that most of the preindustrial sulfate is of biogenic origin. Terrestrial component (Ca 2+ ) has the highest concentrations in the coldest part of the Little Ice Age, suggesting more windy conditions, transporting local terrestrial dust to the ice cap. All ion concentrations decrease at the end of the twentieth century, which reflects loss of ions by runoff, with non-sea-salt magnesium being particularly sensitive to melting.
Two isotopic ice core records from western Svalbard are calibrated to reconstruct more than 1000 years of past winter surface air temperature variations in Longyearbyen, Svalbard, and Vardø, northern Norway. Analysis of the derived reconstructions suggests that the climate evolution of the last millennium in these study areas comprises three major sub-periods. The cooling stage in Svalbard (ca. 800–1800) is characterized by a progressive winter cooling of approximately 0.9 °C century−1 (0.3 °C century−1 for Vardø) and a lack of distinct signs of abrupt climate transitions. This makes it difficult to associate the onset of the Little Ice Age in Svalbard with any particular time period. During the 1800s, which according to our results was the coldest century in Svalbard, the winter cooling associated with the Little Ice Age was on the order of 4 °C (1.3 °C for Vardø) compared to the 1900s. The rapid warming that commenced at the beginning of the 20th century was accompanied by a parallel decline in sea-ice extent in the study area. However, both the reconstructed winter temperatures as well as indirect indicators of summer temperatures suggest the Medieval period before the 1200s was at least as warm as at the end of the 1990s in Svalbard
Ice cores from the relatively low-lying ice caps in Svalbard have not been widely exploited in climatic and environmental studies due to uncertainties about the effect of melt water percolation. However, results from two recent Svalbard ice cores, at Lomonosovfonna (1250 m asl) and Austfonna (750 m asl), have shown that with careful site selection, high-resolution sampling and multiple chemical analyses, it is possible to recover ice cores with partly preserved annual signals. These cores are estimated to cover at least the past 600 years and have been dated using a combination of known reference horizons and glacial modeling. The d 18 O data from both Lomonosovfonna and Austfonna ice cores suggest that the 20th century was the warmest during the past 600 years. A comparison of the ice core and sea ice records from this period suggests that sea ice extent and Austfonna d 18 O are linked over the past 400 years. This may reflect the position of the storm tracks and their direct influence on the relatively low altitude Austfonna. Lomonosovfonna may be less sensitive to such changes and primarily record atmospheric changes due to its higher elevation. The anthropogenic influence on Svalbard environment is illustrated by increased levels of non-sea-salt sulphate, nitrate, acidity, fly-ash and organic contaminants particularly during the second half of 1900s. Decreased concentrations of some components in recent decades most likely reflect emission and use restrictions. However, some current-use organic pesticide compounds show growing concentrations in near surface layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.