In this work, we propose a novel strategy for the fabrication of flexible thermoplastic microdevices entirely based on lamination processes. The same low-cost laminator apparatus can be used from master fabrication to microchannel sealing. This process is appropriate for rapid prototyping at laboratory scale, but it can also be easily upscaled to industrial manufacturing. For demonstration, we used here Cycloolefin Copolymer (COC), a thermoplastic polymer that is extensively used for microfluidic applications. COC is a thermoplastic polymer with good chemical resistance to common chemicals used in microfluidics such as acids, bases and most polar solvents. Its optical quality and mechanical resistance make this material suitable for a large range of applications in chemistry or biology. As an example, the electrokinetic separation of pollutants is proposed in the present study.
The novelty of this paper lies in the development of a multistep process for the manufacturing of plasma millireactors operating at atmospheric pressure. The fabrication process relies on the integration of metallic electrodes over a cyclic olefin copolymer chip by a combination of photopatterning and sputtering. The developed plasma millireactors were successfully tested by creating air discharges in the gas volume of the millichannel. A sputtered silica layer was deposited on the channel walls to provide a barrier between the plasma and the polymer in order to prevent the alteration of polymer surfaces during the plasma treatment. Interest in this process of employing plasma millireactor as a high reactive environment is demonstrated here by the degradation of a volatile organic compound (acetaldehyde) in ambient air. In this miniaturized device, we obtained a high acetaldehyde conversion (98%) for a specific input energy lower than 200 J L(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.